BVFLEMR: an integrated federated learning and blockchain technology for cloud-based medical records recommendation system

Author:

Hai Tao,Zhou Jincheng,Srividhya S. R.,Jain Sanjiv Kumar,Young Praise,Agrawal Shweta

Abstract

AbstractBlockchain is the latest boon in the world which handles mainly banking and finance. The blockchain is also used in the healthcare management system for effective maintenance of electronic health and medical records. The technology ensures security, privacy, and immutability. Federated Learning is a revolutionary learning technique in deep learning, which supports learning from the distributed environment. This work proposes a framework by integrating the blockchain and Federated Deep Learning in order to provide a tailored recommendation system. The work focuses on two modules of blockchain-based storage for electronic health records, where the blockchain uses a Hyperledger fabric and is capable of continuously monitoring and tracking the updates in the Electronic Health Records in the cloud server. In the second module, LightGBM and N-Gram models are used in the collaborative learning module to recommend a tailored treatment for the patient’s cloud-based database after analyzing the EHR. The work shows good accuracy. Several metrics like precision, recall, and F1 scores are measured showing its effective utilization in the cloud database security.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference31 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Device Selection Methods in Federated Learning: A Survey;SN Computer Science;2024-08-02

2. Privacy-preserving in Blockchain-based Federated Learning systems;Computer Communications;2024-06

3. Federated Learning on Blockchain Networks;2024 5th International Conference for Emerging Technology (INCET);2024-05-24

4. A Survey on the use of Federated Learning in Privacy-Preserving Recommender Systems;IEEE Open Journal of the Computer Society;2024

5. Incentivized Federated Learning with Local Differential Privacy Using Permissioned Blockchains;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3