Enhanced security using multiple paths routine scheme in cloud-MANETs

Author:

Hai Tao,Zhou Jincheng,Lu Ye,Jawawi Dayang,Wang Dan,Onyema Edeh MichaelORCID,Biamba Cresantus

Abstract

AbstractCloud Mobile Ad-hoc Networks (Cloud-MANETs) is a framework that can access and deliver cloud services to MANET users through their smart devices. MANETs is a pool of self-organized mobile gadgets that can communicate with each other with no support from a central authority or infrastructure. The main advantage of MANETs is its ability to manage mobility while data communication between different users in the system occurs. In MANETs, clustering is an active technique used to manage mobile nodes. The security of MANETs is a key aspect for the fundamental functionality of the network. Addressing the security-related problems ensures that the confidentiality and integrity of the data transmission is secure. MANETs are highly prone to attacks because of their properties.In clustering schemes, the network is broken down to sub-networks called clusters. These clusters can have overlapping nodes or be disjointed. An enhanced node referred to asthe Cluster Head (CH) is chosen from each set to overseetasks related to routing. It decreases the member nodes’ overhead and improvesthe performance of the system. The relationship between the nodes and CH may vary randomly, leading to re-associations and re-clustering in a MANET that is clustered. An efficient and effective routing protocol is required to allow networking and to find the most suitable paths between the nodes. The networking must be spontaneous, infrastructure-less, and provide end-to-end interactions. The aim of routing is the provision of maximum network load distribution and robust networks. This study focused on the creation of a maximal route between a pair of nodes, and to ensure the appropriate and accurate delivery of the packet. The proposed solution ensured that routing can be carried out with the lowest bandwidth consumption. Compared to existing protocols, the proposed solution had a control overhead of 24, packet delivery ratio of 81, the lowest average end-to-end delay of 6, and an improved throughput of 80,000, thereby enhancing the output of the network. Our result shows that multipath routing enables the network to identify alternate paths connecting the destination and source. Routing is required to conserve energy and for optimum bandwidth utilization.

Funder

The project was supported by the Department of Culture Studies, Religious Studies and Educational Sciences, University of Gävle, Gävle, Sweden

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference54 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3