A port-based forwarding load-balancing scheduling approach for cloud datacenter networks

Author:

Liu Zhiyu,Zhao Aqun,Liang Mangui

Abstract

AbstractToday’s datacenter networks (DCNs) scale is rapidly increasing because of the wide deployment of cloud services and the rapid rise of edge computing. The bandwidth consumption and cost of a DCN are growing sharply with the extensions of network size. Thus, how to keep the traffic balanced is a key and challenging issue. However, the traditional load balancing algorithms such as Equal-Cost Multi-Path routing (ECMP) are not suitable for high dynamic traffic in cloud DCNs. In this paper, we propose a port-based forwarding load balancing scheduling (PFLBS) approach for Fat-tree based DCNs with some new features which can overcome the disadvantages of the existing load balancing methods in the following aspects. Firstly, we define a port-based source-routing addressing scheme, which decreases the switch complexity and makes the table-lookup operation unnecessary. Secondly, based on this addressing scheme, we proposed an effective routing mechanism which can obtain multiple available paths for flow scheduling based in Fat-tree. All the path information is saved in servers and each server only needs to maintain its own path information. Thirdly, we propose an efficient algorithm to implement large flows scheduling dynamically in terms of current link utilization ratio. This method is suitable for cloud DCNs and edge computing, which can reduce the complexity of the switches and the power consumption of the whole network. The experiment results indicate that the PFLBS approach has better performance compared with the ECMP, Hedera and MPTCP approaches, which decreases the flow completion time and improves the average throughput significantly. PFLBS is simple and can be implemented with a few signaling overheads.

Funder

the Joint Project of the National Nature Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3