Author:
Zhu Li,Zhuang Qingheng,Jiang Hailin,Liang Hao,Gao Xinjun,Wang Wei
Abstract
AbstractAs urban rail transit construction advances with information technology, modernization, information, and intelligence have become the direction of development. A growing number of cloud platforms are being developed for transit in urban areas. However, the increasing scale of urban rail cloud platforms, coupled with the deployment of urban rail safety applications on the cloud platform, present a huge challenge to cloud reliability.One of the key components of urban rail transit cloud platforms is Automatic Train Supervision (ATS). The failure of the ATS cloud service would result in less punctual trains and decreased traffic efficiency, making it essential to research fault tolerance methods based on cloud computing to improve the reliability of ATS cloud services. This paper proposes a proactive, reliability-aware failure recovery method for ATS cloud services based on reinforcement learning. We formulate the problem of penalty error decision and resource-efficient optimization using the advanced actor-critic (A2C) algorithm. To maintain the freshness of the information, we use Age of Information (AoI) to train the agent, and construct the agent using Long Short-Term Memory (LSTM) to improve its sensitivity to fault events. Simulation results demonstrate that our proposed approach, LSTM-A2C, can effectively identify and correct faults in ATS cloud services, improving service reliability.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献