Author:
Tian Wei,Yi Lei,Liu Wei,Huang Wei,Ma Guangyi,Zhang Yonghong
Abstract
AbstractAccurate precipitation estimation is significant since it matters to everyone on social and economic activities and is of great importance to monitor and forecast disasters. The traditional method utilizes an exponential relation between radar reflectivity factors and precipitation called Z-R relationship which has a low accuracy in precipitation estimation. With the rapid development of computing power in cloud computing, recent researches show that artificial intelligence is a promising approach, especially deep learning approaches in learning accurate patterns and appear well suited for the task of precipitation estimation, given an ample account of radar data. In this study, we introduce these approaches to the precipitation estimation, proposing two models based on the back propagation neural networks (BPNN) and convolutional neural networks (CNN) respectively, to compare with the traditional method in meteorological service systems. The results of the three approaches show that deep learning algorithms outperform the traditional method with 75.84% and 82.30% lower mean square errors respectively. Meanwhile, the proposed method with CNN achieves a better performance than that with BPNN for its ability to preserve the spatial information by maintaining the interconnection between pixels, which improves 26.75% compared to that with BPNN.
Publisher
Springer Science and Business Media LLC
Subject
Computer Networks and Communications,Software
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献