Ground radar precipitation estimation with deep learning approaches in meteorological private cloud

Author:

Tian Wei,Yi Lei,Liu Wei,Huang Wei,Ma Guangyi,Zhang Yonghong

Abstract

AbstractAccurate precipitation estimation is significant since it matters to everyone on social and economic activities and is of great importance to monitor and forecast disasters. The traditional method utilizes an exponential relation between radar reflectivity factors and precipitation called Z-R relationship which has a low accuracy in precipitation estimation. With the rapid development of computing power in cloud computing, recent researches show that artificial intelligence is a promising approach, especially deep learning approaches in learning accurate patterns and appear well suited for the task of precipitation estimation, given an ample account of radar data. In this study, we introduce these approaches to the precipitation estimation, proposing two models based on the back propagation neural networks (BPNN) and convolutional neural networks (CNN) respectively, to compare with the traditional method in meteorological service systems. The results of the three approaches show that deep learning algorithms outperform the traditional method with 75.84% and 82.30% lower mean square errors respectively. Meanwhile, the proposed method with CNN achieves a better performance than that with BPNN for its ability to preserve the spatial information by maintaining the interconnection between pixels, which improves 26.75% compared to that with BPNN.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3