Image data model optimization method based on cloud computing

Author:

Liu Jingyu,Wu Jing,Sun Linan,Zhu Hailong

Abstract

AbstractIn the current age of data explosion, the amount of data has reached incredible proportions. Digital image data constitute most of these data. With the development of science and technology, the demand for networked work and life continues to grow. Cloud computing technology plays an increasingly important role in life and work. This paper studies the optimization methods for cloud computing image data recognition models. The parallelization and task scheduling of the remote-sensing image classification model SCSRC based on spatial correlation regularization and sparse representation are studied in a cloud computing platform. First, cloud detection technology, combined with the dynamic features of the edge overlap region, is implemented in cloud computing mode. For image edge overlap region detection, the SCSRC method is implemented on a single machine, and the time performance of the method is analysed experimentally, which provides a basis for parallelization research under the cloud computing platform. Finally, the speedup and expansion ratio of the SK-SCSRC algorithm are determined by experiment, and MR-SCSRC and SK-SCSRC are compared. The simulation results show that, compared to previous methods, the method of image edge overlap detection is more accurate and the image fusion is better, which improves the image recognition ability in the overlap region and demonstrates the performance improvement of the MR-SCSRC algorithm under scheduling. This method addresses the shortcomings of Hadoop’s existing scheduler and can be integrated into remote-sensing cloud computing systems in the future.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference20 articles.

1. Williams E, Moore J, Wl LS (2017) Image Data Resource: a bioimage data integration and publication platform. Nat Methods 14(8):775

2. Fan N, Wang Y, Lv Y (2017) Improved chirp scaling algorithm for processing squinted mode synthetic aperture sonar data. Cybern Inf Technol 16(6):111–122

3. Aminsoofi A, Irfan Khan M, Fazaleamin FA (2017) A review on data security in cloud computing. Int J Comput Appl 96(2):95–96

4. Barsoum AF, Hasan MA (2015) Provable multicopy dynamic data possession in cloud computing systems. IEEE Trans Inf Forensics Secur 10(3):485–497

5. Rost P, Mannweiler C, Michalopoulos DS (2017) Network slicing to enable scalability and flexibility in 5G Mobile networks. IEEE Commun Mag 55(5):72–79

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3