Energy-aware adaptive offloading of soft real-time jobs in mobile edge clouds

Author:

Silva Joaquim,Marques Eduardo R. B.ORCID,Lopes Luís M.B.,Silva Fernando

Abstract

AbstractWe present a model for measuring the impact of offloading soft real-time jobs over multi-tier cloud infrastructures. The jobs originate in mobile devices and offloading strategies may choose to execute them locally, in neighbouring devices, in cloudlets or in infrastructure cloud servers. Within this specification, we put forward several such offloading strategies characterised by their differential use of the cloud tiers with the goal of optimizing execution time and/or energy consumption. We implement an instance of the model using Jay, a software framework for adaptive computation offloading in hybrid edge clouds. The framework is modular and allows the model and the offloading strategies to be seamlessly implemented while providing the tools to make informed runtime offloading decisions based on system feedback, namely through a built-in system profiler that gathers runtime information such as workload, energy consumption and available bandwidth for every participating device or server. The results show that offloading strategies sensitive to runtime conditions can effectively and dynamically adjust their offloading decisions to produce significant gains in terms of their target optimization functions, namely, execution time, energy consumption and fulfilment of job deadlines.

Funder

FEDER

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference34 articles.

1. Wikipedia (2020) Apple Designed Processors; consulted on December 1. Available at https://en.wikipedia.org/wiki/Apple-designed_processors. Accessed: 1 May 2021.

2. Fernando N, Loke SW, Rahayu W (2013) Mobile cloud computing: A survey. Futur Gener Comput Syst 29(1):84–106.

3. Drolia U, Martins R, Tan J, Chheda A, Sanghavi M, Gandhi R, et al (2013) The Case for Mobile Edge-Clouds. IEEE, Washington.

4. Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput 8(4):14–23.

5. Silva J, Marques ERB, Lopes L, Silva F (2020) Jay: Adaptive Computation Offloading for Hybrid Cloud Environments. IEEE, Washington.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3