A resource scheduling method for cloud data centers based on thermal management

Author:

Mao Li,Chen Rui,Cheng Huiwen,Lin Weiwei,Liu Bo,Wang James Z.

Abstract

AbstractWith the rapid growth of cloud computing services, the high energy consumption of cloud data centers has become a critical concern of the cloud computing society. While virtual machine (VM) consolidation is often used to reduce energy consumption, excessive VM consolidation may lead to local hot spots and increase the risk of equipment failure. One possible solution to this problem is to utilize thermal-aware scheduling, but existing approaches have trouble realizing the balance between SLA and energy consumption. This paper proposes a novel method to manage cloud data center resources based on thermal management (TM-VMC), which optimizes total energy consumption and proactively prevents hot spots from a global perspective. Its VM consolidation process includes four phases where the VMs scheduler uses an improved ant colony algorithm (UACO) to find appropriate target hosts for VMs based on server temperature and utilization status obtained in real-time. Experimental results show that the TM-VMC approach can proactively avoid data center hot spots and significantly reduce energy consumption while maintaining low Service Level Agreement (SLA) violation rates compared to existing mainstream VM consolidation algorithms with workloads from real-world data centers.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference46 articles.

1. Cheng H, Liu B, Lin W, Ma Z, Li K, Hsu C (2021) A survey of energy-saving technologies in cloud data centers. J Supercomput 77(11):13385–13420

2. China Academy of Information and Communications (2022) Data center white paper. http://www.ctiforum.com/uploadfile/2022/0428/20220428104230327.pdf. Accessed 11 Feb 2023.

3. Fernández-Cerero D, Fernández-Montes A, Jakóbik A (2020) Limiting global warming by improving data-centre software. IEEE ACCESS 8:44048–44062

4. Koomey JG (2011) Growth in data center electricity use 2005 to 2010. https://alejandrobarros.com/wp-content/uploads/old/Growth_in_Data_Center_Electricity_use_2005_to_2010.pdf. Accessed 11 Feb 2023.

5. Ding W, Luo F, Han L, Gu C, Lu H, Fuentes J (2020) Adaptive virtual machine consolidation framework based on performance-to-power ratio in cloud data centers. Futur Gener Comput Syst 111:254–270

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3