Efficient task offloading using particle swarm optimization algorithm in edge computing for industrial internet of things

Author:

You Qian,Tang BingORCID

Abstract

AbstractAs a new form of computing based on the core technology of cloud computing and built on edge infrastructure, edge computing can handle computing-intensive and delay-sensitive tasks. In mobile edge computing (MEC) assisted by 5G technology, offloading computing tasks of edge devices to the edge servers in edge network can effectively reduce delay. Designing a reasonable task offloading strategy in a resource-constrained multi-user and multi-MEC system to meet users’ needs is a challenge issue. In industrial internet of things (IIoT) environment, considering the rapid increase of industrial edge devices and the heterogenous edge servers, a particle swarm optimization (PSO)-based task offloading strategy is proposed to offload tasks from resource-constrained edge devices to edge servers with energy efficiency and low delay style. A multi-objective optimization problem that considers time delay, energy consumption and task execution cost is proposed. The fitness function of the particle represents the total cost of offloading all tasks to different MEC servers. The offloading strategy based on PSO is compared with the genetic algorithm (GA) and the simulated annealing algorithm (SA) through simulation experiments. The experimental results show that the task offloading strategy based on PSO can reduce the delay of the MEC server, balance the energy consumption of the MEC server, and effectively realize the reasonable resource allocation.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Hunan Provincial Education Department

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3