Security strategy for autonomous vehicle cyber-physical systems using transfer learning

Author:

Alsulami Abdulaziz A.,Al-Haija Qasem Abu,Alturki Badraddin,Alqahtani Ali,Alsini Raed

Abstract

AbstractCyber-physical systems (CPSs) are emergent systems that enable effective real-time communication and collaboration (C&C) of physical components such as control systems, sensors, actuators, and the surrounding environment through a cyber communication infrastructure. As such, autonomous vehicles (AVs) are one of the fields that have significantly adopted the CPS approach to improving people's lives in smart cities by reducing energy consumption and air pollution. Therefore, autonomous vehicle-cyber physical systems (AV-CPSs) have attracted enormous investments from major corporations and are projected to be widely used. However, AV-CPS is vulnerable to cyber and physical threat vectors due to the deep integration of information technology (IT), including cloud computing, with the communication process. Cloud computing is critical in providing the scalable infrastructure required for real-time data processing, storage, and analysis in AV-CPS, allowing these systems to work seamlessly in smart cities. CPS components such as sensors and control systems through network infrastructure are particularly vulnerable to cyber-attacks targeted by attackers using the communication system. This paper proposes an intelligent intrusion detection system (IIDS) for AV-CPS using transfer learning to identify cyberattacks launched against connected physical components of AVs through a network infrastructure. First, AV-CPS was developed by implementing the controller area network (CAN) and integrating it into the AV simulation model. Second, the dataset was generated from the AV-CPS. The collected dataset was then preprocessed to be trained and tested via pre-trained CNNs. Third, eight pre-trained networks were implemented, namely, InceptionV3, ResNet-50, ShuffleNet, MobileNetV2, GoogLeNet, ResNet-18, SqueezeNet, and AlexNet. The performance of the implemented models was evaluated. According to the experimental evaluation results, GoogLeNet outperformed all other pre-rained networks, scoring an F1- score of 99.47%.

Funder

King Abdulaziz University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multilevel Electronic Control Unit Re-Encryption Scheme for Autonomous Vehicles;IEEE Transactions on Intelligent Transportation Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3