Improved Jellyfish Algorithm-based multi-aspect task scheduling model for IoT tasks over fog integrated cloud environment

Author:

Jangu Nupur,Raza Zahid

Abstract

AbstractCorporations and enterprises creating IoT-based systems frequently use fog computing integrated with cloud computing to harness the benefits offered by both. These computing paradigms use virtualization and a pay-as-you-go strategy to provide IT resources, including CPU, memory, network and storage. Resource management in such a hybrid environment becomes a challenging task. This problem is exacerbated in the IoT environment, as it generates deadline-driven and heterogeneous data demanding real-time processing. This work proposes an efficient two-step scheduling algorithm comprising a Bi-factor classification task phase based on deadline and priority and a scheduling phase using an enhanced artificial Jellyfish Search Optimizer (JS) proposed as an Improved Jellyfish Algorithm (IJFA). The model considers a variety of cloud and fog resource parameters, including speed, capacity, task size, number of tasks, and number of virtual machines for resource provisioning in a fog integrated cloud environment. The model has been tested for the real-time task scenario with the number of tasks considering both the smaller workload and the relatively higher workload scenario matching the real-time situation. The model addresses the Quality of Service (QoS) parameters of minimizing the batch’s make-span time, lowering the batch execution costs, and increasing the resource utilization. Simulation results prove the effectiveness of the proposed model.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scheduling the Tasks in Cloud Computing using Adaptive Adjustment in Whale Optimization Algorithm;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

2. Energy-Efficient Task Scheduling based on Whale Optimization Algorithm Cyber-Physical Systems;2024 International Conference on Integrated Circuits and Communication Systems (ICICACS);2024-02-23

3. Hybrid Metaheuristic Algorithms for Resource Allocation in Fog Computing Environments;2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM);2024-02-21

4. IWaOA: Resource Aware Scheduling Through Cloud Fog Computing Environment;2023 4th International Conference on Communication, Computing and Industry 6.0 (C216);2023-12-15

5. Fault tolerant trust based task scheduler using Harris Hawks optimization and deep reinforcement learning in multi cloud environment;Scientific Reports;2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3