Automated visual quality assessment for virtual and augmented reality based digital twins

Author:

Roullier Ben,McQuade Frank,Anjum Ashiq,Bower Craig,Liu Lu

Abstract

AbstractVirtual and augmented reality digital twins are becoming increasingly prevalent in a number of industries, though the production of digital-twin systems applications is still prohibitively expensive for many smaller organisations. A key step towards reducing the cost of digital twins lies in automating the production of 3D assets, however efforts are complicated by the lack of suitable automated methods for determining the visual quality of these assets. While visual quality assessment has been an active area of research for a number of years, few publications consider this process in the context of asset creation in digital twins. In this work, we introduce an automated decimation procedure using machine learning to assess the visual impact of decimation, a process commonly used in the production of 3D assets which has thus far been underrepresented in the visual assessment literature. Our model combines 108 geometric and perceptual metrics to determine if a 3D object has been unacceptably distorted during decimation. Our model is trained on almost 4, 000 distorted meshes, giving a significantly wider range of applicability than many models in the literature. Our results show a precision of over 97% against a set of test models, and performance tests show our model is capable of performing assessments within 2 minutes on models of up to 25, 000 polygons. Based on these results we believe our model presents both a significant advance in the field of visual quality assessment and an important step towards reducing the cost of virtual and augmented reality-based digital-twins.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3