MFGAD-INT: in-band network telemetry data-driven anomaly detection using multi-feature fusion graph deep learning

Author:

Duan Yunfeng,Li Chenxu,Bai Guotao,Chen Guo,Zhou Fanqin,Chen Jiaxing,Gao Zehua,Zhang Chun

Abstract

AbstractAs the cloud services market grows, cloud management tools that detect network anomalies in a non-intrusive manner are critical to improve users’ experience of cloud services. However, some network anomalies, such as Microburst, in cloud systems are very discreet. Network monitoring methods, e.g., SNMP, Ping, are of coarse temporal granularity or low-dimension metrics, have difficulty to identify such anomalies quickly and accurately. Network telemetry is able to collect rich network metrics with fine temporal granularity, which can provide deep insight into network anomalies. However, the rich features in the telemetry data are insufficient exploited in existing research. This paper proposes a Multi-feature Fusion Graph Deep learning approach driven by the In-band Network Telemetry, shorted as MFGAD-INT, to efficiently extract and process the spatial-temporal correlation information in telemetry data and effectively identify the anomalies. The experimental results show that the accuracy performance of the proposed method improves about 10.56% compared to the anomaly detection method without network telemetry and about 9.73% compared to the network telemetry-based method.

Funder

Joint Funds of the National Natural Science Foundation of China

CMCC and BUPT cooperative program

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge Computing Enabled Anomaly Detection in IoT Environments Using Federated Learning;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3