2PC*: a distributed transaction concurrency control protocol of multi-microservice based on cloud computing platform

Author:

Fan Pan,Liu Jing,Yin Wei,Wang Hui,Chen Xiaohong,Sun Haiying

Abstract

AbstractThe two-phase commit (2PC) protocol is a key technique for achieving distributed transactions in storage systems such as relational databases and distributed databases. 2PC is a strongly consistent and centralized atomic commit protocol that ensures the serialization of the transaction execution order. However, it does not scale well to large and high-throughput systems, especially for applications with many transactional conflicts, such as microservices and cloud computing. Therefore, 2PC has a performance bottleneck for distributed transaction control across multiple microservices. In this paper, we propose 2PC*, a novel concurrency control protocol for distributed transactions that outperforms 2PC, allowing greater concurrency across multiple microservices. 2PC* can greatly reduce overhead because locks are held throughout the transaction process. Moreover, we improve the fault-tolerance mechanism of 2PC* using transaction compensation. We also implement a middleware solution for transactions in microservice support using 2PC*. We compare 2PC* to 2PC by applying both to Ctrip MSECP, and 2PC* outperforms 2PC in workloads with varying degrees of contention. When the contention becomes high, the experimental results show that 2PC* achieves at most a 3.3x improvement in throughput and a 67% reduction in latency, which proves that our scheme can easily support distributed transactions with multi-microservice modules. Finally, we embed our middleware scheme in the PaaS cloud platform and demonstrate its strong applicability to cloud computing through long-term analysis of the monitoring results in the cloud platform.

Funder

East China Normal University

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Scalability Mechanisms for Microservices in Federated Cloud Platform;2023 IEEE 5th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2023-10-11

2. A Survey of Saga Frameworks for Distributed Transactions in Event-driven Microservices;2022 Third International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE);2022-12-16

3. Increasing data availability and fault tolerance for decentralized collaborative data-sharing systems;Annals of Computer Science and Information Systems;2022-09-26

4. Fundamentals of Transaction Management in Enterprise Application Architectures;IEEE Access;2022

5. A new secure 2PL real-time concurrency control algorithm (ES2PL);International Journal of Intelligent Networks;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3