Performance evaluation of multivariate statistical techniques using edge-enabled optimisation for change detection in activity monitoring

Author:

Khan Naveed,McClean Sally,Zhang Shuai,Nugent Chris

Abstract

AbstractThe monitoring of human activities using simple body worn sensors is an important and emerging area of research in machine learning. The sensors capture a large amount of data in a short period of Time in a relatively un-obtrusive manner. The sensor data might have different transitions to be used for deification of different user activities. Therefore, change point detection can be used to classify the transition from one underlying distribution to another. The automatic and accurate change point detection is not only used for different events, however, can also be used for generating real world datasets and responding to changes in patient vital signs in critical situation. Moreover, the huge amount of data can use the current state-of-the-art cloud and edge computing platforms to process the change detection locally and more efficiently. In this paper, we used multivariate exponentially weighted moving Average (MEWMA) for online change point detection. Additionally, genetic algorithm (GA) and particle swarm optimization (PSO) is used to automatically identify an optimal parameter set by maximizing the F-measure. The optimisation approach is implemented over an edge cloud platform so that the data can be processed locally and more accurately. Furthermore, we evaluate our approach against multivariate cumulative sum (MCUSUM) from state-of the-art in terms of different metric measures such as accuracy, precision, sensitivity, G-means and F-measure. Results have been evaluated based on real data set collected using accelerometer for a set of 9 distinct activities performed by 10 users for total period of 35 minutes with achieving high accuracy from 99.3% to 99.9% and F-measure up to 62.94%.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3