Near real-time optimization of fog service placement for responsive edge computing

Author:

Goethals TomORCID,De Turck Filip,Volckaert Bruno

Abstract

AbstractIn recent years, computing workloads have shifted from the cloud to the fog, and IoT devices are becoming powerful enough to run containerized services. While the combination of IoT devices and fog computing has many advantages, such as increased efficiency, reduced network traffic and better end user experience, the scale and volatility of the fog and edge also present new problems for service deployment scheduling.Fog and edge networks contain orders of magnitude more devices than cloud data centers, and they are often less stable and slower. Additionally, frequent changes in network topology and the number of connected devices are the norm in edge networks, rather than the exception as in cloud data centers.This article presents a service scheduling algorithm, labeled “Swirly”, for fog and edge networks containing hundreds of thousands of devices, which is capable of incorporating changes in network conditions and connected devices. The theoretical performance is explored, and a model of the behaviour and limits of fog nodes is constructed. An evaluation of Swirly is performed, showing that it is capable of managing service meshes for at least 300.000 devices in near real-time.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3