LAE-GAN: a novel cloud-based Low-light Attention Enhancement Generative Adversarial Network for unpaired text images

Author:

Xue Minglong,He Yanyi,Xie Peiqi,He Zhengyang,Feng Xin

Abstract

AbstractWith the widespread adoption of mobile multimedia devices, the deployment of compute-intensive inference tasks on edge and resource-constrained devices, particularly in the context of low-light text detection, remains a formidable challenge. Existing deep learning approaches have shown limited effectiveness in restoring images for extremely dark scenes. To address these limitations, this paper presents a novel cloud-based Low-light Attention Enhancement Generative Adversarial Network for unpaired text images (LAE-GAN) for the non-paired text image enhancement task in extremely low-light conditions. In the first stage, compressed low-light images are transmitted from edge devices to a cloud server for image enhancement. The LAE-GAN, an end-to-end network comprising a Zero-DCE and AGM-net generator, is designed with a global and local discriminator structure. The initial illumination restoration of extremely low-light images is accomplished using the Zero-DCE network. To enhance text details, we propose an Enhanced Text Attention Mechanism (ETAM) that transforms text information into a comprehensive text attention mechanism across the entire network. The Sobel operator is employed to extract text edge information, while attention is focused on text region details through constraints imposed on the attention map and edge map. Additionally, an AGM-Net module is integrated to reduce noise and fine-tune illumination. In the second stage, the cloud server makes decisions based on user requirements and processes requests in parallel, scaling with the quantity of requests. In the third stage, the enhanced results are transmitted back to edge devices for text detection. Experimental results on widely used LOL and SID low-light datasets demonstrate significant improvements in both quantitative and qualitative analysis, surpassing state-of-the-art enhancement methods in terms of image restoration and text detection.

Funder

The Scientific Research Foundation of Chongqing University of Technology

Chongqing Postgraduate Innovation Fund

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Enhancemnt of Low-Light Images Using Hierarchical Pyramid Attentive Network and Hierarchical Feature Fusion;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3