Congressional symmetry: years remaining mirror years served in the U.S. House and Senate

Author:

Carey James R.ORCID,Eriksen Brinsley,Rao Arni S. R. Srinivasa

Abstract

AbstractOur overarching goal in this paper was to both test and identify applications for a fundamental theorem of replacement-level populations known as the Stationary Population Identity (SPI), a mathematical model that equates the fraction of a population age x and the fraction with x years to live. Since true stationarity is virtually non-existent in human populations as well as in populations of non-human species, we used historical data on the memberships in both chambers of the U.S. Congress as populations. We conceived their fixed numbers (e.g., 100 Senators; 435 Representatives) as stationary populations, and their years served and years remaining as the equivalent of life lived and life remaining. Our main result was the affirmation of the mathematical prediction—i.e., the robust symmetry of years served and years remaining in Congress over the approximately 230 years of its existence (1789–2022). A number of applications emerged from this regularity and the distributional patterns therein including (1) new metrics such as Congressional half-life and other quantiles (e.g., 95% turnover); (2) predictability of the distribution of member’s years remaining; (3) the extraordinary information content of a single number—the mean number of years served [i.e., derive birth (b) and death (d) rates; use of d as exponential rate parameter for model life tables]; (4) the concept of and metrics associated with period-specific populations (Congress); (5) Congressional life cycle concept with Formation, Growth, Senescence and Extinction Phases; and (6) longitudinal party transition rates for 100% Life Cycle turnover (Democrat/Republican), i.e., each seat from predecessor party-to-incumbent party and from incumbent party-to-successor party. Although our focus is on the use of historical data for Congressional members, we believe that most of the results are general and thus both relevant and applicable to all types of stationary or quasi-stationary populations including to the future world of zero population growth (ZPG).

Funder

National Institute on Aging

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Demography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3