Abstract
AbstractRegulation of gut microbiota and its impact on human health is the theme of intensive research. The incidence and prevalence of atrial fibrillation (AF) are continuously escalating as the global population ages and chronic disease survival rates increase; however, the mechanisms are not entirely clarified. It is gaining awareness that alterations in the assembly, structure, and dynamics of gut microbiota are intimately engaged in the AF progression. Owing to advancements in next-generation sequencing technologies and computational strategies, researchers can explore novel linkages with the genomes, transcriptomes, proteomes, and metabolomes through parallel meta-omics approaches, rendering a panoramic view of the culture-independent microbial investigation. In this review, we summarized the evidence for a bidirectional correlation between AF and the gut microbiome. Furthermore, we proposed the concept of “gut-immune-heart” axis and addressed the direct and indirect causal roots between the gut microbiome and AF. The intricate relationship was unveiled to generate innovative microbiota-based preventive and therapeutic interventions, which shed light on a definite direction for future experiments.
Funder
The National Key Research and Development Program of China
Research Project of Jinan Microecological Biomedicine Shandong Laboratory
Central Plains Talent Program-Central Plains Youth Top Talents, Young and Middle-aged Academic Leaders of Henan Provincial Health Commission
Funding for Scientific Research and Innovation Team of The First Affiliated Hospital of Zhengzhou University
Publisher
Springer Science and Business Media LLC
Reference144 articles.
1. Kim JE, Li B, Fei L, Horne R, Lee D, Loe AK, et al. Gut microbiota promotes stem cell differentiation through macrophage and mesenchymal niches in early postnatal development. Immunity. 2022;55(12):2300-17.e6.
2. Xiao W, Su J, Gao X, Yang H, Weng R, Ni W, et al. The microbiota-gut-brain axis participates in chronic cerebral hypoperfusion by disrupting the metabolism of short-chain fatty acids. Microbiome. 2022;10(1):62.
3. Manor O, Dai CL, Kornilov SA, Smith B, Price ND, Lovejoy JC, et al. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat Commun. 2020;11(1):5206.
4. Cui GY, Rao BC, Zeng ZH, Wang XM, Ren T, Wang HY, et al. Characterization of oral and gut microbiome and plasma metabolomics in COVID-19 patients after 1-year follow-up. Mil Med Res. 2022;9(1):32.
5. Rao BC, Zhang GZ, Zou YW, Ren T, Ren HY, Liu C, et al. Alterations in the human oral microbiome in cholangiocarcinoma. Mil Med Res. 2022;9(1):62.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献