Spine system changes in soldiers after load carriage training in a plateau environment: a prediction model research

Author:

Qu Hao,Yu Ling-Jia,Wu Ju-Tai,Liu Gang,Liu Sheng-Hui,Teng Peng,Ding Li,Zhao YuORCID

Abstract

Abstract Background Low back pain is the most common spinal disorder among soldiers, and load carriage training (LCT) is considered the main cause. We aimed to investigate changes in the spine system of soldiers after LCT at high altitudes and the change trend of the lumbar spine and surrounding soft tissues under different load conditions. Methods Magnetic resonance imaging scans of the lumbar spines of nine soldiers from plateau troops were collected and processed. We used ImageJ and Surgimap software to analyze changes in the lumbar paraspinal muscles, intervertebral discs (IVDs), intervertebral foramina, and curvature. Furthermore, the multiple linear regression equation for spine injury owing to LCT at high altitudes was established as the mathematical prediction model using SPSS Statistics version 23.0 software. Results In the paraspinal muscles, the cross-sectional area (CSA) increased significantly from 9126.4 ± 691.6 mm2 to 9862.7 ± 456.4 mm2, and the functional CSA (FCSA) increased significantly from 8089.6 ± 707.7 mm2 to 8747.9 ± 426.2 mm2 after LCT (P < 0.05); however, the FCSA/CSA was not significantly different. Regarding IVD, the total lumbar spine showed a decreasing trend after LCT with a significant difference (P < 0.05). Regarding the lumbar intervertebral foramen, the percentage of the effective intervertebral foraminal area of L3/4 significantly decreased from 91.6 ± 2.0 to 88.1% ± 2.9% (P < 0.05). For curvature, the lumbosacral angle after LCT (32.4° ± 6.8°) was significantly higher (P < 0.05) than that before LCT (26.6° ± 5.3°), while the lumbar lordosis angle increased significantly from 24.0° ± 7.1° to 30.6° ± 7.4° (P < 0.05). The linear regression equation of the change rate, △FCSA% = − 0.718 + 23.085 × load weight, was successfully established as a prediction model of spinal injury after LCT at high altitudes. Conclusion The spinal system encountered increased muscle volume, muscle congestion, tissue edema, IVD compression, decreased effective intervertebral foramen area, and increased lumbar curvature after LCT, which revealed important pathophysiological mechanisms of lumbar spinal disorders in soldiers following short-term and high-load weight training. The injury prediction model of the spinal system confirmed that a load weight < 60% of soldiers’ weight cannot cause acute pathological injury after short-term LCT, providing a reference supporting the formulation of the load weight standard for LCT.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3