Abstract
AbstractBacteria can evolve rapidly by acquiring new traits such as virulence, metabolic properties, and most importantly, antimicrobial resistance, through horizontal gene transfer (HGT). Multidrug resistance in bacteria, especially in Gram-negative organisms, has become a global public health threat often through the spread of mobile genetic elements. Conjugation represents a major form of HGT and involves the transfer of DNA from a donor bacterium to a recipient by direct contact. Conjugative plasmids, a major vehicle for the dissemination of antimicrobial resistance, are selfish elements capable of mediating their own transmission through conjugation. To spread to and survive in a new bacterial host, conjugative plasmids have evolved mechanisms to circumvent both host defense systems and compete with co-resident plasmids. Such mechanisms have mostly been studied in model plasmids such as the F plasmid, rather than in conjugative plasmids that confer antimicrobial resistance (AMR) in important human pathogens. A better understanding of these mechanisms is crucial for predicting the flow of antimicrobial resistance-conferring conjugative plasmids among bacterial populations and guiding the rational design of strategies to halt the spread of antimicrobial resistance. Here, we review mechanisms employed by conjugative plasmids that promote their transmission and establishment in Gram-negative bacteria, by following the life cycle of conjugative plasmids.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献