Expression dynamics of periodic transcripts during cancer cell cycle progression and their correlation with anticancer drug sensitivity

Author:

Li Chun-Xiao,Wang Jin-Song,Wang Wen-Na,Xu Dong-Kui,Zhou Yan-Tong,Sun Fang-Zhou,Li Yi-Qun,Guo Feng-Zhu,Ma Jia-Lu,Zhang Xue-Yan,Chang Meng-Jiao,Xu Bing-He,Ma Fei,Qian Hai-LiORCID

Abstract

Abstract Background The cell cycle is at the center of cellular activities and is orchestrated by complex regulatory mechanisms, among which transcriptional regulation is one of the most important components. Alternative splicing dramatically expands the regulatory network by producing transcript isoforms of genes to exquisitely control the cell cycle. However, the patterns of transcript isoform expression in the cell cycle are unclear. Therapies targeting cell cycle checkpoints are commonly used as anticancer therapies, but none of them have been designed or evaluated at the alternative splicing transcript level. The utility of these transcripts as markers of cell cycle-related drug sensitivity is still unknown, and studies on the expression patterns of cell cycle-targeting drug-related transcripts are also rare. Methods To explore alternative splicing patterns during cell cycle progression, we performed sequential transcriptomic assays following cell cycle synchronization in colon cancer HCT116 and breast cancer MDA-MB-231 cell lines, using flow cytometry and reference cell cycle transcripts to confirm the cell cycle phases of samples, and we developed a new algorithm to describe the periodic patterns of transcripts fluctuating during the cell cycle. Genomics of Drug Sensitivity in Cancer (GDSC) drug sensitivity datasets and Cancer Cell Line Encyclopedia (CCLE) transcript datasets were used to assess the correlation of genes and their transcript isoforms with drug sensitivity. We identified transcripts associated with typical drugs targeting cell cycle by determining correlation coefficients. Cytotoxicity assays were used to confirm the effect of ENST00000257904 against cyclin dependent kinase 4/6 (CDK4/6) inhibitors. Finally, alternative splicing transcripts associated with mitotic (M) phase arrest were analyzed using an RNA synthesis inhibition assay and transcriptome analysis. Results We established high-resolution transcriptome datasets of synchronized cell cycle samples from colon cancer HCT116 and breast cancer MDA-MB-231 cells. The results of the cell cycle assessment showed that 43,326, 41,578 and 29,244 transcripts were found to be periodically expressed in HeLa, HCT116 and MDA-MB-231 cells, respectively, among which 1280 transcripts showed this expression pattern in all three cancer cell lines. Drug sensitivity assessments showed that a large number of these transcripts displayed a higher correlation with drug sensitivity than their corresponding genes. Cell cycle-related drug screening showed that the level of the CDK4 transcript ENST00000547281 was more significantly associated with the resistance of cells to CDK4/6 inhibitors than the level of the CDK4 reference transcript ENST00000257904. The transcriptional inhibition assay following M phase arrest further confirmed the M-phase-specific expression of the splicing transcripts. Combined with the cell cycle-related drug screening, the results also showed that a set of periodic transcripts, for example, ENST00000314392 (a dolichyl-phosphate mannosyltransferase polypeptide 2 isoform transcript), was more associated with drug sensitivity than the levels of their corresponding gene transcripts. Conclusions In summary, we identified a panel of cell cycle-related periodic transcripts and found that the levels of transcripts of drug target genes showed different values for predicting drug sensitivity, providing novel insights into alternative splicing-related drug development and evaluation.

Funder

The National Key Research and Development Program of China

National Natural Science Foundation of China

CAMS Innovation Fund for Medical Sciences

Open Issue of State Key Laboratory of Molecular Oncology

Independent Issue of State Key Laboratory of Molecular Oncology

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3