An open real-time tele-stethoscopy system

Author:

Foche-Perez Ignacio,Ramirez-Payba Rodolfo,Hirigoyen-Emparanza German,Balducci-Gonzalez Fernando,Simo-Reigadas Francisco-Javier,Seoane-Pascual Joaquin,Corral-Peñafiel Jaime,Martinez-Fernandez Andres

Abstract

Abstract Background Acute respiratory infections are the leading cause of childhood mortality. The lack of physicians in rural areas of developing countries makes difficult their correct diagnosis and treatment. The staff of rural health facilities (health-care technicians) may not be qualified to distinguish respiratory diseases by auscultation. For this reason, the goal of this project is the development of a tele-stethoscopy system that allows a physician to receive real-time cardio-respiratory sounds from a remote auscultation, as well as video images showing where the technician is placing the stethoscope on the patient’s body. Methods A real-time wireless stethoscopy system was designed. The initial requirements were: 1) The system must send audio and video synchronously over IP networks, not requiring an Internet connection; 2) It must preserve the quality of cardiorespiratory sounds, allowing to adapt the binaural pieces and the chestpiece of standard stethoscopes, and; 3) Cardiorespiratory sounds should be recordable at both sides of the communication. In order to verify the diagnostic capacity of the system, a clinical validation with eight specialists has been designed. In a preliminary test, twelve patients have been auscultated by all the physicians using the tele-stethoscopy system, versus a local auscultation using traditional stethoscope. The system must allow listen the cardiac (systolic and diastolic murmurs, gallop sound, arrhythmias) and respiratory (rhonchi, rales and crepitations, wheeze, diminished and bronchial breath sounds, pleural friction rub) sounds. Results The design, development and initial validation of the real-time wireless tele-stethoscopy system are described in detail. The system was conceived from scratch as open-source, low-cost and designed in such a way that many universities and small local companies in developing countries may manufacture it. Only free open-source software has been used in order to minimize manufacturing costs and look for alliances to support its improvement and adaptation. The microcontroller firmware code, the computer software code and the PCB schematics are available for free download in a subversion repository hosted in SourceForge. Conclusions It has been shown that real-time tele-stethoscopy, together with a videoconference system that allows a remote specialist to oversee the auscultation, may be a very helpful tool in rural areas of developing countries.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference11 articles.

1. United Nations: The Millennium Development Goals Report. New York: Published by the United Nations Department of Economic and Social Affairs; 2010. Available: http://www.un.org/millenniumgoals/pdf/MDG%20Report%202010%20En%20r15%20-low%20res%2020100615%20-.pdf. ISBN 978-92-1-101218-7. [Online].

2. World Health Organization: World Health Statistics. Geneva: WHO Press; 2011. Available: http://www.who.int/gho/publications/world_health_statistics/EN_WHS2011_Full.pdf. ISBN 978 92 4 156419 9. [Online].

3. Simo Reigadas FJ, Martinez Fernandez A, Javier RLF, Seoane Pascual J: Modeling and optimizing ieee 802.11 dcf for long-distance links. IEEE Trans Mob Comput 2010, 9(6):881–896.

4. Martinez Fernandez A, Villarroel Ortega V, Seoane Pascual J, del Pozo Guerrero F: Analysis of information and communication needs in rural primary healthcare in developing countries. IEEE Trans Inf Technol Biomed 2005, 9(1):66–72. 10.1109/TITB.2004.842411

5. Abella M, Formolo J, Penney D: Comparison of the acoustic properties of six popular stethoscopes. Journal of the Acoustics Society of America 1992, 91(4):2224–2228. 10.1121/1.403655

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Visions for digital integrated cardiovascular care: HRS Digital Health Committee perspectives;Cardiovascular Digital Health Journal;2024-04

2. Recent advancements in telemedicine: Surgical, diagnostic and consultation devices;Biomedical Engineering Advances;2023-11

3. Emergency Auscultation Sound Transmission System Using Web Conferencing Services in Japan;2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT);2022-11

4. Low-Cost Technologies that can be Integrated into Medical Education in Emerging Areas;Current Medical Imaging Formerly Current Medical Imaging Reviews;2022-08

5. Quality Assessment of Respiratory Sounds Extracted from Self-Assembled Digital Stethoscopes;2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2022-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3