Effects of heliox as carrier gas on ventilation and oxygenation in an animal model of piston-type HFOV: a crossover experimental study

Author:

Zeynalov Bakhtiyar,Hiroma Takehiko,Nakamura Tomohiko

Abstract

Abstract Objective This study aimed to compare gas exchange with heliox and oxygen-enriched air during piston-type high-frequency oscillatory ventilation (HFOV). We hypothesized that helium gas would improve both carbon dioxide elimination and arterial oxygenation during piston-type HFOV. Method Five rabbits were prepared and ventilated by piston-type HFOV with carrier 50% helium/oxygen (heliox50) or 50% oxygen/nitrogen (nitrogen50) gas mixture in a crossover study. Changing the gas mixture from nitrogen50 to heliox50 and back was performed five times per animal with constant ventilation parameters. Arterial blood gas, vital function and respiratory test indices were recorded. Results Compared with nitrogen50, heliox50 did not change PaCO2 when stroke volume remained constant, but significantly reduced PaCO2 after alignment of amplitude pressure. No significant changes in PaO2 were seen despite significant decreases in mean airway pressure with heliox50 compared with nitrogen50. Conclusion This study demonstrated that heliox enhances CO2 elimination and maintains oxygenation at the same amplitude but with lower airway pressure compared to air/O2 mix gas during piston-type HFOV.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3