Author:
Huang Juying,Jian Fengzeng,Wu Hao,Li Haiyun
Abstract
Abstract
Background
Clinical diagnosis and therapy for the lumbar disc herniation requires accurate vertebra segmentation. The complex anatomical structure and the degenerative deformations of the vertebrae makes its segmentation challenging.
Methods
An improved level set method, namely edge- and region-based level set method (ERBLS), is proposed for vertebra CT images segmentation. By considering the gradient information and local region characteristics of images, the proposed model can efficiently segment images with intensity inhomogeneity and blurry or discontinuous boundaries. To reduce the dependency on manual initialization in many active contour models and for an automatic segmentation, a simple initialization method for the level set function is built, which utilizes the Otsu threshold. In addition, the need of the costly re-initialization procedure is completely eliminated.
Results
Experimental results on both synthetic and real images demonstrated that the proposed ERBLS model is very robust and efficient. Compared with the well-known local binary fitting (LBF) model, our method is much more computationally efficient and much less sensitive to the initial contour. The proposed method has also applied to 56 patient data sets and produced very promising results.
Conclusions
An improved level set method suitable for vertebra CT images segmentation is proposed. It has the flexibility of segmenting the vertebra CT images with blurry or discontinuous edges, internal inhomogeneity and no need of re-initialization.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference38 articles.
1. Li H, Wang Z: Intervertebral disc biomechanical analysis using the finite element modeling based on medical images. Comput Med Imaging Graph 2006, 30: 363–370. 10.1016/j.compmedimag.2006.09.004
2. Robin S, Skalli W, Lavaste F: Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur Spine J 1994, 3(2):84–90. 10.1007/BF02221445
3. Benameur S, Mignotte M, Parent S, Labelle H, Skalli W, DeGuise J: 3D/2D registration and segmentation of scoliotic vertebrae using statistical models. Comput Med Imag Graph 2003, 27: 321–327.
4. Aubin CE, Dansereau J, Petit Y: Three-dimensional measurement of wedged scoliotic vertebrae and intervertebral disks. Eur Spine J 1998, 7: 59–65. 10.1007/s005860050029
5. Roberts MG, Cootes TF, Adams JE: Automatic segmentation of lumbar vertebrae on digital radiographs using linked active appearance models. Proc Med Image Underst Anal 2006, 2: 120–124.
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献