The effect of latency on bone lengthening force and bone mineralization: an investigation using strain gauge mounted on internal distractor device

Author:

Singare Sekou,Li Dichen,Liu Yaxiong,Wu Zhongying,Wang Jue

Abstract

Abstract Background The purpose of this study was to investigate the effect of latency on the development of bone lengthening force and bone mineralization during mandible distraction osteogenesis. Methods Distraction tensions were investigated at different latency period in 36 rabbits using internal unilateral distractor. Strain gauges were prepared and attached to the distractor to directly assess the level of distraction tension during mandible lengthening. The tensile force environment of the mandible of rabbit during distraction was evaluated through in vivo experiments using two gauges. The animals were divided into 3 groups each containing 12 rabbits. Latency periods of 0, 4 and 7 days respectively were observed prior to beginning distraction. The distraction protocol consisted of a lengthening rate of 1 mm once daily for 8 days, followed by a consolidation phase of 2 weeks after which the animals were killed. Biopsies specimens were taken from the distracted area at the end of the distraction period. A non-distracted area of the mandible bone served as control. The specimens were analyzed by scanning electron microscopy to assess the ultrastructural pattern, and the bone mineralization. Results The resting tension acting on the distraction gap increases through distraction. The 7-day latency groups exhibit higher tension then those of 0-day and 4-days latency groups. Quantitative energy dispersive spectral analysis confirmed that immediate distractions were associated with lower calcium and phosphate atomic weight ratio. Conclusion the latency periods could affect the bone lengthening tension and the bone mineralization process.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3