Author:
Yu Honggang,Pattichis Marios S,Agurto Carla,Beth Goens M
Abstract
Abstract
Background
A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes.
Methods
We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstructions from limited numbers of 2D image planes and multiple acoustic views. Our approach is based on a 3D freehand ultrasound system that allows users to control the 2D acquisition imaging using conventional 2D probes.
For reliable performance, we develop new methods for image segmentation and robust multi-view registration. We first present a new hybrid geometric level-set approach that provides reliable segmentation performance with relatively simple initializations and minimum edge leakage. Optimization of the segmentation model parameters and its effect on performance is carefully discussed. Second, using the segmented images, a new coarse to fine automatic multi-view registration method is introduced. The approach uses a 3D Hotelling transform to initialize an optimization search. Then, the fine scale feature-based registration is performed using a robust, non-linear least squares algorithm. The robustness of the multi-view registration system allows for accurate 3D reconstructions from sparse 2D image planes.
Results
Volume measurements from multi-view 3D reconstructions are found to be consistently and significantly more accurate than measurements from single view reconstructions. The volume error of multi-view reconstruction is measured to be less than 5% of the true volume. We show that volume reconstruction accuracy is a function of the total number of 2D image planes and the number of views for calibrated phantom. In clinical in-vivo cardiac experiments, we show that volume estimates of the left ventricle from multi-view reconstructions are found to be in better agreement with clinical measures than measures from single view reconstructions.
Conclusions
Multi-view 3D reconstruction from sparse 2D freehand B-mode images leads to more accurate volume quantification compared to single view systems. The flexibility and low-cost of the proposed system allow for fine control of the image acquisition planes for optimal 3D reconstructions from multiple views.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference41 articles.
1. Vieyres P, Poisson G, Courrèges F, Smith-Guerin N, Novales C, Arbeille P: A Tele-operated Robotic System for Mobile Tele-echography: The OTELO Project. In M-Health: Emerging Mobile Health Systems Edited by: Istepanian RH, Laxminarayan S, Pattichis CS. 2006.
2. Gooding MJ, Kennedy S, Noble JA: Volume segmentation and reconstruction from freehand three-dimensional ultrasound data with application to ovarian follicle measurement. Ultrasound in Medicine and Biology 2008, 34: 183–195. 10.1016/j.ultrasmedbio.2007.07.023
3. Kawai J, Tanabe K, Morioka S, Shiotani H: Rapid freehand scanning three-dimensional echocardiography: Accurate measurement of left ventricular volumes and ejection fraction compared with quantitative gated scintigraphy. Journal of the American Society of Echocardiography 2003, 16: 110–115. 10.1067/mje.2003.4
4. Detmer PR, Bashein G, Hodges T, Beach KW, Filer EP, Burns DH, SDE Jr: 3D ultrasonic image feature localization based on magnetic scanhead tracking: In vitro calibration and validation. Ultrasound in Medicine & Biology 1994, 20: 923–936.
5. Legget ME, Leotta DF, Bolson EL, McDonald JA, Martin RW, Li XN, Otto CM, Sheehan FH: System for quantitative three-dimensional echocardiography of the left ventricle based on a magnetic-field position and orientation sensing system. IEEE transactions on Biomedical Engineering 1998, 45: 494–504. 10.1109/10.664205
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献