Abstract
Abstract
Background
Public access defibrillators (PADs) are now available for more efficient and rapid treatment of out-of-hospital sudden cardiac arrest. PADs are used normally by untrained people on the streets and in sports centers, airports, and other public areas. Therefore, automated detection of ventricular fibrillation, or its exclusion, is of high importance. A special case exists at railway stations, where electric power-line frequency interference is significant. Many countries, especially in Europe, use 16.7 Hz AC power, which introduces high level frequency-varying interference that may compromise fibrillation detection.
Method
Moving signal averaging is often used for 50/60 Hz interference suppression if its effect on the ECG spectrum has little importance (no morphological analysis is performed). This approach may be also applied to the railway situation, if the interference frequency is continuously detected so as to synchronize the analog-to-digital conversion (ADC) for introducing variable inter-sample intervals. A better solution consists of rated ADC, software frequency measuring, internal irregular re-sampling according to the interference frequency, and a moving average over a constant sample number, followed by regular back re-sampling.
Results
The proposed method leads to a total railway interference cancellation, together with suppression of inherent noise, while the peak amplitudes of some sharp complexes are reduced. This reduction has negligible effect on accurate fibrillation detection.
Conclusion
The method is developed in the MATLAB environment and represents a useful tool for real time railway interference suppression.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference17 articles.
1. Cummins RO, Ornato JP, Thies WH, Pepe PE: Improving survival from sudden cardiac arrest: the 'chain of survival' concept: a statement for health professionals from the Advanced Cardiac Live Support Subcommittee and the Emergency Cardiac Care Committee. American Heart Association. Circulation 1991, 83: 1832–1847.
2. Cobb LA, Eliastam M, Kerber RE, Melker R, Moss AJ, Newell L, Paraskos JA, Weaver WD, Weil M, Weisfeldt ML: Report of the Anerican Heart Association Task Force on the Future of Cardiopulmonary Resuscitation. Circulation 1992, 85: 2346–2355.
3. The American Heart Association in collaboration with the International Liaison Committee on Resuscitation (ILCOR): Guidelines 2000 for cardiopulmonary resuscitation and emergency cardiac care - an international consensus on science. Part 4: automated external defibrillator. Resuscitation 2000, 462: 73–91.
4. Schlimp CJ, Breiteneder M, Lederer W: Safety aspects for public access defibrillation using automated external defibrillators near high-voltage power lines. Acta Anaesthesiol Scand 2004, 48: 595–600. 10.1111/j.1399-6576.2004.00370.x
5. Kanz KG, Kay MV, Biberthaler P, Russ W, Wessel S, Lackner CK, Mutschler W: Susceptibility of automated external defibrillators to train overhead lines and metro third rails. Resuscitation 2004, 62: 189–198. 10.1016/j.resuscitation.2004.02.018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献