Author:
Aleksieva Genoveva,Hollweck Trixi,Thierfelder Nikolaus,Haas Ulrike,Koenig Fabian,Fano Cornelia,Dauner Martin,Wintermantel Erich,Reichart Bruno,Schmitz Christoph,Akra Bassil
Abstract
Abstract
Background
Tissue engineering represents a promising new method for treating heart valve diseases. The aim of this study was evaluate the importance of conditioning procedures of tissue engineered polyurethane heart valve prostheses by the comparison of static and dynamic cultivation methods.
Methods
Human vascular endothelial cells (ECs) and fibroblasts (FBs) were obtained from saphenous vein segments. Polyurethane scaffolds (n = 10) were primarily seeded with FBs and subsequently with ECs, followed by different cultivation methods of cell layers (A: static, B: dynamic). Group A was statically cultivated for 6 days. Group B was exposed to low flow conditions (t1= 3 days at 750 ml/min, t2= 2 days at 1100 ml/min) in a newly developed conditioning bioreactor. Samples were taken after static and dynamic cultivation and were analyzed by scanning electron microscopy (SEM), immunohistochemistry (IHC), and real time polymerase chain reaction (RT-PCR).
Results
SEM results showed a high density of adherent cells on the surface valves from both groups. However, better cell distribution and cell behavior was detected in Group B. IHC staining against CD31 and TE-7 revealed a positive reaction in both groups. Higher expression of extracellular matrix (ICAM, Collagen IV) was observed in Group B. RT- PCR demonstrated a higher expression of inflammatory Cytokines in Group B.
Conclusion
While conventional cultivation method can be used for the development of tissue engineered heart valves. Better results can be obtained by performing a conditioning step that may improve the tolerance of cells to shear stress. The novel pulsatile bioreactor offers an adequate tool for in vitro improvement of mechanical properties of tissue engineered cardiovascular prostheses.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference39 articles.
1. Schoen FJ, Levy RJ: Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 2005, 79: 1072–1080. 10.1016/j.athoracsur.2004.06.033
2. Huang G, Rahimtoola SH: Prosthetic heart valve. Circulation 2011, 123: 2602–2605. 10.1161/CIRCULATIONAHA.110.979518
3. Sewell-Loftin MK, Chun YW, Khademhosseini A, Merryman WD: EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. J CardiovascTtransl Res 2011, 4: 658–671.
4. Cohen IS, Gaudette GR: Regenerating the Heart. New York: Springer; 2011.
5. Weber B, Emmert MY, Schoenauer R, Brokopp C, Baumgartner L, Hoerstrup SP: Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 2011, 33: 307–315. 10.1007/s00281-011-0258-8
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献