Sample entropy characteristics of movement for four foot types based on plantar centre of pressure during stance phase

Author:

Mei Zhanyong,Zhao Guoru,Ivanov Kamen,Guo Yanwei,Zhu Qingsong,Zhou Yongjin,Wang Lei

Abstract

Abstract Background Motion characteristics of CoP (Centre of Pressure, the point of application of the resultant ground reaction force acting on the plate) are useful for foot type characteristics detection. To date, only few studies have investigated the nonlinear characteristics of CoP velocity and acceleration during the stance phase. The aim of this study is to investigate whether CoP regularity is different among four foot types (normal foot, pes valgus, hallux valgus and pes cavus); this might be useful for classification and diagnosis of foot injuries and diseases. To meet this goal, sample entropy, a measure of time-series regularity, was used to quantify the CoP regularity of four foot types. Methods One hundred and sixty five subjects that had the same foot type bilaterally (48 subjects with healthy feet, 22 with pes valgus, 47 with hallux valgus, and 48 with pes cavus) were recruited for this study. A Footscan® system was used to collect CoP data when each subject walked at normal and steady speed. The velocity and acceleration in medial-lateral (ML) and anterior-posterior (AP) directions, and resultant velocity and acceleration were derived from CoP. The sample entropy is the negative natural logarithm of the conditional probability that a subseries of length m that matches pointwise within a tolerance r also matches at the next point. This was used to quantify variables of CoP velocity and acceleration of four foot types. The parameters r (the tolerance) and m (the matching length) for sample entropy calculation have been determined by an optimal method. Results It has been found that in order to analyze all CoP parameters of velocity and acceleration during the stance phase of walking gait, for each variable there is a different optimal r value. On the contrary, the value m=4 is optimal for all variables. Sample entropies of both velocity and acceleration in AP direction were highly correlated with their corresponding resultant variables for r>0.91. The sample entropy of the velocity in AP direction was moderately correlated with the one of the acceleration in the same direction (r≥0.673), as well as with the resultant acceleration (r≥0.660). The sample entropy of resultant velocity was moderately correlated with the one of the acceleration in AP direction, as well as with the resultant acceleration (for the both r≥0.689). Moderate correlations were found between variables for the left foot and their corresponding variables for the right foot. Sample entropies of AP velocity, resultant velocity, AP acceleration, and resultant acceleration of the right foot as well as AP velocity and resultant velocity of the left foot were, respectively, significantly different among the four foot types. Conclusions It can be concluded that the sample entropy of AP velocity (or the resultant velocity) of the left foot, ML velocity, resultant velocity, ML acceleration and resultant acceleration could serve for evaluation of foot types or selection of appropriate footwear.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3