Evaluating the forced oscillation technique in the detection of early smoking-induced respiratory changes

Author:

Faria Alvaro CD,Lopes Agnaldo J,Jansen José M,Melo Pedro L

Abstract

Abstract Background Early detection of the effects of smoking is of the utmost importance in the prevention of chronic obstructive pulmonary disease (COPD). The forced oscillation technique (FOT) is easy to perform since it requires only tidal breathing and offers a detailed approach to investigate the mechanical properties of the respiratory system. The FOT was recently suggested as an attractive alternative for diagnosing initial obstruction in COPD, which may be helpful in detecting COPD in its initial phases. Thus, the purpose of this study was twofold: (1) to evaluate the ability of FOT to detect early smoking-induced respiratory alterations; and (2) to compare the sensitivity of FOT with spirometry in a sample of low tobacco-dose subjects. Methods Results from a group of 28 smokers with a tobacco consumption of 11.2 ± 7.3 pack-years were compared with a control group formed by 28 healthy subjects using receiver operating characteristic (ROC) curves and a questionnaire as a gold standard. The early adverse effects of smoking were adequately detected by the absolute value of the respiratory impedance (Z4Hz), the intercept resistance (R0), and the respiratory system dynamic compliance (Crs, dyn). Z4Hz was the most accurate parameter (Se = 75%, Sp = 75%), followed by R0 and Crs, dyn. The performances of the FOT parameters in the detection of the early effects of smoking were higher than that of spirometry (p < 0.05). Conclusion This study shows that FOT can be used to detect early smoking-induced respiratory changes while these pathologic changes are still potentially reversible. These findings support the use of FOT as a versatile clinical diagnostic tool in aiding COPD prevention and treatment.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3