Author:
Sano Michael B,Neal Robert E,Garcia Paulo A,Gerber David,Robertson John,Davalos Rafael V
Abstract
Abstract
Background
Despite advances in transplant surgery and general medicine, the number of patients awaiting transplant organs continues to grow, while the supply of organs does not. This work outlines a method of organ decellularization using non-thermal irreversible electroporation (N-TIRE) which, in combination with reseeding, may help supplement the supply of organs for transplant.
Methods
In our study, brief but intense electric pulses were applied to porcine livers while under active low temperature cardio-emulation perfusion. Histological analysis and lesion measurements were used to determine the effects of the pulses in decellularizing the livers as a first step towards the development of extracellular scaffolds that may be used with stem cell reseeding. A dynamic conductivity numerical model was developed to simulate the treatment parameters used and determine an irreversible electroporation threshold.
Results
Ninety-nine individual 1000 V/cm 100-μs square pulses with repetition rates between 0.25 and 4 Hz were found to produce a lesion within 24 hours post-treatment. The livers maintained intact bile ducts and vascular structures while demonstrating hepatocytic cord disruption and cell delamination from cord basal laminae after 24 hours of perfusion. A numerical model found an electric field threshold of 423 V/cm under specific experimental conditions, which may be used in the future to plan treatments for the decellularization of entire organs. Analysis of the pulse repetition rate shows that the largest treated area and the lowest interstitial density score was achieved for a pulse frequency of 1 Hz. After 24 hours of perfusion, a maximum density score reduction of 58.5 percent had been achieved.
Conclusions
This method is the first effort towards creating decellularized tissue scaffolds that could be used for organ transplantation using N-TIRE. In addition, it provides a versatile platform to study the effects of pulse parameters such as pulse length, repetition rate, and field strength on whole organ structures.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference60 articles.
1. Chan SC, Fan ST, Lo CM, Liu CL, Wei WI, Chik BHY, Wong J: A Decade of Right Liver Adult-to-Adult Living Donor Liver Transplantation - the Recipient Mid-Term Outcomes. Annals of Surgery 2008, 248: 411–418.
2. United Network of Organ Sharing
[http://www.unos.org]
3. Fabre: Report of the British Transplantation Society Working Party on Organ Donation. 1995.
4. Feest TG, Riad HN, Collins CH, Golby MGS, Nicholls AJ, Hamad SN: Protocol for Increasing Organ Donation after Cerebrovascular Deaths in District General-Hospital. Lancet 1990, 335: 1133–1135. 10.1016/0140-6736(90)91134-V
5. Riad H, Nicholls A: An Ethical Debate - Elective Ventilation of Potential Organ Donors. British Medical Journal 1995, 310: 714–715.
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献