Monitoring and analysis of dynamic growth of human embryonic stem cells: comparison of automated instrumentation and conventional culturing methods

Author:

Narkilahti Susanna,Rajala Kristiina,Pihlajamäki Harri,Suuronen Riitta,Hovatta Outi,Skottman Heli

Abstract

Abstract Background Human embryonic stem cells (hESCs) are a potential source of cells for use in regenerative medicine. Automation of culturing, monitoring and analysis is crucial for fast and reliable optimization of hESC culturing methods. Continuous monitoring of living cell cultures can reveal more information and is faster than using laborious traditional methods such as microscopic evaluation, immunohistochemistry and flow cytometry. Methods We analyzed the growth dynamics of two hESC lines HS237 and HS293 in a conventional culture medium containing serum replacement and a xeno-free X-vivo 10 medium. We used a new automated culture platform utilizing machine vision technology, which enables automatic observation, recording and analysis of intact living cells. We validated the results using flow cytometry for cell counting and characterization. Results In our analyses, hESC colony growth could be continuously monitored and the proportion of undifferentiated cells automatically analyzed. No labeling was needed and we could, for the first time, perform detailed follow up of live, undisturbed cell colonies, and record all the events in the culture. The growth rate of the hESCs cultured in X-vivo 10 medium was significantly lower and a larger proportion of the cells were differentiated. Conclusion The new automated system enables rapid and reliable analysis of undifferentiated growth dynamics of hESCs. We demonstrate the effectiveness of the system by comparing hESC growth in different culture conditions.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference15 articles.

1. Min-Yang, Kwon O: Crater wear measurement using computer vision and automatic focusing. Journal of materials technology 1996, 58: 362–367. 10.1016/0924-0136(95)02208-2

2. Subbarao M: Accurate recovery of three-dimensional shape from image focus. IEEE Transactions on pattern analysis and machine intelligence 1995,17(3):266–274. 10.1109/34.368191

3. Tarvainen JM, Saarinen J, Laitinen J, Korpinen J, Viitanen J: Creating images with high data contents for microworld applications. Industrial Systems Review 2002, 17–23.

4. Boyle R: Image processing, analysis, and machine vision . USA, Brooks/Cole Publishing Company; 1998:p. 828.

5. Gonzalez RC, Woods RE: Digital image processing, Chapter: 12. Object Recognition . USA, Addison Wesley. ; 1993:p. 716.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3