Classification of the extracellular fields produced by activated neural structures

Author:

Richerson Samantha,Ingram Mark,Perry Danielle,Stecker Mark M

Abstract

Abstract Background Classifying the types of extracellular potentials recorded when neural structures are activated is an important component in understanding nerve pathophysiology. Varying definitions and approaches to understanding the factors that influence the potentials recorded during neural activity have made this issue complex. Methods In this article, many of the factors which influence the distribution of electric potential produced by a traveling action potential are discussed from a theoretical standpoint with illustrative simulations. Results For an axon of arbitrary shape, it is shown that a quadrupolar potential is generated by action potentials traveling along a straight axon. However, a dipole moment is generated at any point where an axon bends or its diameter changes. Next, it is shown how asymmetric disturbances in the conductivity of the medium surrounding an axon produce dipolar potentials, even during propagation along a straight axon. Next, by studying the electric fields generated by a dipole source in an insulating cylinder, it is shown that in finite volume conductors, the extracellular potentials can be very different from those in infinite volume conductors. Finally, the effects of impulses propagating along axons with inhomogeneous cable properties are analyzed. Conclusion Because of the well-defined factors affecting extracellular potentials, the vague terms far-field and near-field potentials should be abandoned in favor of more accurate descriptions of the potentials.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology

Reference36 articles.

1. Chiappa KH: Evoked Potentials in General Medicine. Philadelphia; Lippincott-Raven; 1997.

2. Plonsey R, Barr RC: Bioelectricity: a quantitative approach. New York: Kluwer Academic; 2000.

3. Yamada T: The anatomic and physiologic bases for median nerve somatosensory evoked potentials. Neurologic Clinics North America 1988, 6: 704–733.

4. Cracco RQ, Cracco JB: Somatosensory evoked potential in man: far field potentials. Electroenceph Clin Neurophys 1976, 41: 460–466.

5. Frith RW, Benstead TJ, Daube JR: Stationary waves recorded at the shoulder after median nerve stimulation. Neurology 1986, 36: 1458–1464.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3