Author:
Bonomini Maria P,Arini Pedro D,Valentinuzzi Max E
Abstract
Abstract
Background
Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Using reported clinical data, we apply this concept for evaluating the probability of ventricular fibrillation based on the electrocardiographic ST-segment deviation values.
Methods
Data collected by previous reports were used to fit an allometric model in order to estimate ventricular fibrillation probability. Patients presenting either with death, myocardial infarction or unstable angina were included to calculate such probability as, VF
p
= δ + β (ST), for three different ST deviations. The coefficients δ and β were obtained as the best fit to the clinical data extended over observational periods of 1, 6, 12 and 48 months from occurrence of the first reported chest pain accompanied by ST deviation.
Results
By application of the above equation in log-log representation, the fitting procedure produced the following overall coefficients: Average β = 0.46, with a maximum = 0.62 and a minimum = 0.42; Average δ = 1.28, with a maximum = 1.79 and a minimum = 0.92. For a 2 mm ST-deviation, the full range of predicted ventricular fibrillation probability extended from about 13% at 1 month up to 86% at 4 years after the original cardiac event.
Conclusions
These results, at least preliminarily, appear acceptable and still call for full clinical test. The model seems promising, especially if other parameters were taken into account, such as blood cardiac enzyme concentrations, ischemic or infarcted epicardial areas or ejection fraction. It is concluded, considering these results and a few references found in the literature, that the allometric model shows good predictive practical value to aid medical decisions.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference12 articles.
1. Valentinuzzi ME: Cardiac Fibrillation-Defibrillation: Clinical and Engineering Aspects. In Series on Bioengineering and Biomedical Engineering. World Scientific Publishers, Singapore; 2010.
2. Noujaim SF, Lucca E, Muñoz V, Persaud D, Berenfeld O, Meijler FL, Jalife J: From mouse to whale: A universal scaling relation for the PR interval of the electrocardiogram of mammals. Circulation 2004, 110: 2801–2808. 10.1161/01.CIR.0000146785.15995.67
3. Lindstedt SL, Schaeffer PJ: Use of allometry in predicting anatomical and physiological parameters of mammals. Laboratory Animals 2002, 36: 1–19. 10.1258/0023677021911731
4. Klootwijk APJ: Dynamic computer-assisted ST segment monitoring in patients with acute coronary syndromes. In PhD Thesis. Erasmus Universiteit, Rótterdam; 1998.
5. Kléber AG: ST-segment elevation in the electrocardiogram: a sign of myocardial ischemia. Cardiovasc Res 2000, 45(1):111–118.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献