Author:
Waschkowski Florian,Hesse Stephan,Rieck Anne Christine,Lohmann Tibor,Brockmann Claudia,Laube Thomas,Bornfeld Norbert,Thumann Gabriele,Walter Peter,Mokwa Wilfried,Johnen Sandra,Roessler Gernot
Abstract
Abstract
Background
Retinal implants have been developed to treat blindness causing retinal degenerations such as Retinitis pigmentosa (RP). The retinal stimulators are covering only a small portion of the retina usually in its center. To restore not only central vision but also a useful visual field retinal stimulators need to cover a larger area of the retina. However, large area retinal stimulators are much more difficult to implant into an eye. Some basic questions concerning this challenge should be answered in a series of experiments.
Methods
Large area retinal stimulators were fabricated as flexible multielectrode arrays (MEAs) using silicon technology with polyimide as the basic material for the substrate. Electrodes were made of gold covered with reactively sputtered iridium oxide. Several prototype designs were considered and implanted into enucleated porcine eyes. The prototype MEAs were also used as recording devices.
Results
Large area retinal stimulator MEAs were fabricated with a diameter of 12 mm covering a visual angle of 37.6° in a normal sighted human eye. The structures were flexible enough to be implanted in a folded state through an insertion nozzle. The implants could be positioned onto the retinal surface and fixated here using a retinal tack. Recording of spontaneous activity of retinal neurons was possible in vitro using these devices.
Conclusions
Large flexible MEAs covering a wider area of the retina as current devices could be fabricated using silicon technology with polyimide as a base material. Principal surgical techniques were established to insert such large devices into an eye and the devices could also be used for recording of retinal neural activity.
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference36 articles.
1. Daiger SP, Bowne SJ, Sullivan LS: Perspective on genes and mutations causing retinitis pigmentosa. Arch Ophthalmol 2007, 125: 151–158. 10.1001/archopht.125.2.151
2. Aldahmesh MA, Abu Safieh L, Alkuraya H, Al-Rajhi A, Shamseldin H, Hashem M, Alzahrani F, Khan AO, Alqahtani F, Rahbeeni Z, Alowain M, Khalak H, Al-Hazzaa S, Meyer BF, Alkuraya FS: Molecular characterization of retinitis pigmentosa in Saudi Arabia. Mol Vis 2009, 15: 2464–2469.
3. Bunker CH, Berson EL, Bromley WC, Hayes RP, Roderick TH: Prevalence of retinitis pigmentosa in Maine. Am J Ophthalmol 1984, 97: 357–365.
4. Humayun MS, de Juan E, Dagnelie G Jr, Greenberg RJ, Propst RH, Philips DH: Visual perception elicited by electrical stimulation of retina in blind humans. Arch Ophthalmol 1996, 114: 40–46. 10.1001/archopht.1996.01100130038006
5. Hornig R, Laube T, Walter P, Velikay-Parel M, Bornfeld N, Feucht M, Akguel H, Rössler G, Alteheld N, Lütke Notarp B, Wyatt J, Richard G: A method and technical equipment for an acute human trial to evaluate retinal implant technology. J Neural Eng 2005, 2: 129–134. 10.1088/1741-2560/2/1/014
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献