Author:
Gracia Luis,Ibarz Elena,Puértolas Sergio,Cegoñino José,López-Prats Fernando,Panisello Juan J,Herrera Antonio
Abstract
Abstract
Background
A hip replacement with a cemented or cementless femoral stem produces an effect on the bone called adaptive remodelling, attributable to mechanical and biological factors. All of the cementless prostheses designs try to achieve an optimal load transfer in order to avoid stress-shielding, which produces an osteopenia.
Long-term densitometric studies taken after implanting ABG-I and ABG-II stems confirm that the changes made to the design and alloy of the ABG-II stem help produce less proximal atrophy of the femur. The simulation with FE allowed us to study the biomechanical behaviour of two stems. The aim of this study was, if possible, to correlate the biological and mechanical findings.
Methods
Both models with prostheses ABG-I and II have been simulated in five different moments of time which coincide with the DEXA measurements: postoperative, 6 months, 1, 3 and 5 years, in addition to the healthy femur as the initial reference. For the complete comparative analysis of both stems, all of the possible combinations of bone mass (group I and group II of pacients in two controlled studies for ABG-I and II stems, respectively), prosthetic geometry (ABG-I and ABG-II) and stem material (Wrought Titanium or TMZF) were simulated.
Results and Discussion
In both groups of bone mass an increase of stress in the area of the cancellous bone is produced, which coincides with the end of the HA coating, as a consequence of the bottleneck effect which is produced in the transmission of loads, and corresponds to Gruen zones 2 and 6, where no osteopenia can be seen in contrast to zones 1 and 7.
Conclusions
In this study it is shown that the ABG-II stem is more effective than the ABG-I given that it generates higher tensional values on the bone, due to which proximal bone atrophy diminishes. This biomechanical behaviour with an improved transmission of loads confirmed by means of FE simulation corresponds to the biological findings obtained with Dual-Energy X-Ray Absorptiometry (DEXA).
Publisher
Springer Science and Business Media LLC
Subject
Radiology Nuclear Medicine and imaging,Biomedical Engineering,General Medicine,Biomaterials,Radiological and Ultrasound Technology
Reference32 articles.
1. Huiskes R, Weinans H, Dalstra M: Adaptative bone remodelling and biomechanical design considerations for noncemented total hip arthroplasty. Orthopedics 1989, 12: 1255–1267.
2. Sychter CJ, Engh CA: The influence of clinical factor on periprosthetic bone remodelling. Clin Orthop 1996, 322: 285–292.
3. Engh CA Jr, Young AM, Engh CA Sr, Hopper RH Jr: Clinical consequences of stress shielding after porous-coated total hip arthroplasty. Clin Orthop Relat Res 2003, 417: 157–163.
4. Glassman AH, Bobyn JD, Tanzer M: New femoral designs: do they influence stress-shielding? Clin Orthop 2006, 453: 64–74. 10.1097/01.blo.0000246541.41951.20
5. Wick M, Lester DK: Radiological changes in second and third generation Zweymuller stems. J Bone Joint Sur Br 2004, 86(8):1108–14. 10.1302/0301-620X.86B8.14732
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献