The hsa_circ_0000276-ceRNA regulatory network and immune infiltration in cervical cancer

Author:

Zhang Honglei,Wang Xiuting,Li Yaqin,Bai Ying,Li Qi,Wang Shuling,Wei Yimiao,Li Jiarong,Wen Songquan,Zhao Weihong

Abstract

Abstract Background Our previous studies have confirmed that miR-154-5p can regulate pRb expression, and thus, play a tumor suppressor role in HPV16 E7-induced cervical cancer. However, its upstream molecules have not been elucidated in the progression of cervical cancer. This study aimed to explore the role of the miR-154-5p upstream molecule, hsa_circ_0000276 in cervical cancer development and its possible mechanisms of action. Methods We detected differences in whole transcriptome expression profiles of cervical squamous carcinoma and tissues adjacent to cervical cancer tissues from patients using microarray technology to predict circular RNAs (circRNAs) with binding sites to miR-154-5p. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect the expression of hsa_circ_0000276 (which had the strongest binding capacity to miR-154 and was selected as the target molecule) in cervical cancer tissues, followed by in vitro functional assays. Downstream microRNAs (miRNAs) and mRNAs of hsa_circ_0000276 were identified using transcriptome microarray data and databases, while the protein–protein interaction networks were obtained using STRING. A competing endogenous RNA (ceRNA) network centered on hsa_circ_0000276 was constructed using Cytoscape and GO and KEGG databases. Abnormal expression and prognosis of critical downstream molecules were analyzed using gene databases and molecular experiments. qRT-PCR and western blot analysis was performed to verify the expression of candidate genes. Results We identified 4,001 differentially expressed circRNAs between HPV16-positive cervical squamous carcinoma and benign cervical tissues and 760 circRNAs targeting miR-154-5p, including hsa_circ_0000276. hsa_circ_0000276 and miR-154-5p directly bound, and hsa_circ_0000276 was upregulated, in cervical precancerous lesions and cervical cancer tissues and cells. Silencing hsa_circ_0000276 inhibited G1/S transition and cell proliferation and promoted apoptosis in SiHa and CaSki cells. Bioinformatics analysis showed that the hsa_circ_0000276 ceRNA network included 17 miRNAs and seven mRNAs, and downstream molecules of hsa_circ_0000276 were upregulated in cervical cancer tissues. These downstream molecules were associated with a poor prognosis and affected cervical cancer-associated immune infiltration. Of these, expression of CD47, LDHA, PDIA3, and SLC16A1 was downregulated in sh_hsa_circ_0000276 cells. Conclusions Our findings show that hsa_circ_0000276 exerts cancer-promoting effects in cervical cancer and is an underlying biomarker for cervical squamous cell carcinoma.

Funder

National Natural Science Foundation of China

Outstanding Youth Fund Project of Shanxi Province

China Postdoctoral Science Foundation

Research Project Supported by Shanxi Scholarship Council of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference34 articles.

1. Cancer incidence and mortality worldwide iarc cancerbase available from: http://globocan.iarc.fr. Accessed 2 July 2021.

2. Wild CP, Weiderpass E, Stewart BW. World Cancer Report: Cancer research for cancer prevention. Lyon: International agency for research on cancer. 2020. Available at: https://publications.iarc.fr/Non-Series-Publications/World-Cancer-Reports/World-Cancer-Report-Cancer-Research-For-Cancer-Prevention-2020.

3. Wang L, Sun L, Liu R, Mo H, Niu Y, Chen T, Wang Y, Han S, Tu K, Liu Q. Long non-coding RNA MAPKAPK5-AS1/PLAGL2/HIF-1alpha signaling loop promotes hepatocellular carcinoma progression. J Exp Clin Cancer Res. 2021;40(1):72.

4. Shou Y, Wang X, Liang Y, Liu X, Chen K. Exosomes-derived miR-154-5p attenuates esophageal squamous cell carcinoma progression and angiogenesis by targeting kinesin family member 14. Bioengineered. 2022;13(2):4610–20.

5. Jiang J, Cheng X. Circular RNA circABCC4 acts as a ceRNA of miR-154-5p to improve cell viability, migration and invasion of breast cancer cells in vitro. Cell Cycle. 2020;19(20):2653–61.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3