Analysis of myosin genes in HNSCC and identify MYL1 as a specific poor prognostic biomarker, promotes tumor metastasis and correlates with tumor immune infiltration in HNSCC

Author:

Li Ce,Guan Rui,Li Wenming,Wei Dongmin,Cao Shengda,Chang Fen,Wei Qun,Wei Ran,Chen Long,Xu Chenyang,Wu Kainan,Lei Dapeng

Abstract

AbstractHead neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors which ranks the sixth incidence in the world. Although treatments for HNSCC have improved significantly in recent years, its recurrence rate and mortality rate remain high. Myosin genes have been studied in a variety of tumors, however its role in HNSCC has not been elucidated. GSE58911 and GSE30784 gene expression profile analysis were performed to detect significantly dys-regulated myosin genes in HNSCC. The Cancer Genome Atlas (TCGA) HNSCC database was used to verify the dys-regulated myosin genes and study the relationship between these genes and prognosis in HNSCC. The results showed that MYL1, MYL2, MYL3, MYH2, and MYH7 were down-regulated, while MYH10 was up-regulated in patients with HNSCC. Interestingly, MYL1, MYL2, MYH1, MYH2, and MYH7 were shown to be unfavorable prognostic markers in HNSCC. It is also worth noting that MYL1 was a specific unfavorable prognostic biomarker in HNSCC. MYL1, MYL2, MYL3, MYH2, MYH7, and MYH10 promoted CD4 + T cells activation in HNSCC. MYL1 was proved to be down-regulated in HNSCC tissues compared to normal tissues at protein levels. MYL1 overexpression had no effect on proliferation, but significantly promoted migration of Fadu cells. MYL1 increased EGF and EGFR protein expression levels. Moreover, there is a positive correlation between MYL1 expression and Tcm CD8 cells, Tcm CD4 + cells, NK cells, Mast cells, NKT cells, Tfh cells and Treg cells in HNSCC. Overall, MYL1 facilitates tumor metastasis and correlates with tumor immune infiltration in HNSCC and these effects may be associated with the EGF/EGFR pathway.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3