EMP3 as a prognostic biomarker correlates with EMT in GBM
-
Published:2024-01-17
Issue:1
Volume:24
Page:
-
ISSN:1471-2407
-
Container-title:BMC Cancer
-
language:en
-
Short-container-title:BMC Cancer
Author:
Li Li,Xia Siyu,Zhao Zitong,Deng Lili,Wang Hanbing,Yang Dongbo,Hu Yizhou,Ji Jingjing,Huang Dayong,Xin Tao
Abstract
Abstract
Background
Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM.
Methods
We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan–Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers.
Results
EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT.
Conclusion
EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Funder
Heilongjiang Postdoctoral Launch Fund 2019.
Publisher
Springer Science and Business Media LLC
Reference53 articles.
1. Maggs L, Cattaneo G, Dal AE, Moghaddam AS, Ferrone S. CAR T cell-based immunotherapy for the treatment of Glioblastoma. Front Neurosci. 2021;15:662064. https://doi.org/10.3389/fnins.2021.662064. 2. Luo X, Yang F. Section: neurosurgery bioinformatics analysis reveals that IGFBP2, EMP3, PDPN, and MCUB genes were potential biomarkers for Glioblastoma. Int J Contemp Med Res. 2020;7:1. 3. Ostrom QT, Cioffi G, Gittleman H, Patil N, Waite K, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016. Neuro Oncol. 2019;21:v1–100. https://doi.org/10.1093/neuonc/noz150. 4. Thornton N, Karamatic Crew V, Tilley L, Green CA, Tay CL, Griffiths RE, Singleton BK, Spring F, Walser P, Alattar AG, Jones B, Laundy R, Storry JR, Möller M, Wall L, Charlewood R, Westhoff CM, Lomas-Francis C, Yahalom V, Feick U, Seltsam A, Mayer B, Olsson ML, Anstee DJ. Disruption of the tumour-associated EMP3 enhances erythroid proliferation and causes the MAM-negative phenotype. Nat Commun. 2020;11:3569. https://doi.org/10.1038/s41467-020-17060-4. 5. Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer. 2017;1868:199–211. https://doi.org/10.1016/j.bbcan.2017.04.004.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|