A novel immune-related gene pair prognostic signature for predicting overall survival in bladder cancer

Author:

Fu Yang,Sun Shanshan,Bi Jianbin,Kong Chuize,Yin Lei

Abstract

Abstract Background Bladder cancer (BC) is the ninth most common malignant tumor. We constructed a risk signature using immune-related gene pairs (IRGPs) to predict the prognosis of BC patients. Methods The mRNA transcriptome, simple nucleotide variation and clinical data of BC patients were downloaded from The Cancer Genome Atlas (TCGA) database (TCGA-BLCA). The mRNA transcriptome and clinical data were also extracted from Gene Expression Omnibus (GEO) datasets (GSE31684). A risk signature was built based on the IRGPs. The ability of the signature to predict prognosis was analyzed with survival curves and Cox regression. The relationships between immunological parameters [immune cell infiltration, immune checkpoints, tumor microenvironment (TME) and tumor mutation burden (TMB)] and the risk score were investigated. Finally, gene set enrichment analysis (GSEA) was used to explore molecular mechanisms underlying the risk score. Results The risk signature utilized 30 selected IRGPs. The prognosis of the high-risk group was significantly worse than that of the low-risk group. We used the GSE31684 dataset to validate the signature. Close relationships were found between the risk score and immunological parameters. Finally, GSEA showed that gene sets related to the extracellular matrix (ECM), stromal cells and epithelial-mesenchymal transition (EMT) were enriched in the high-risk group. In the low-risk group, we found a number of immune-related pathways in the enriched pathways and biofunctions. Conclusions We used a new tool, IRGPs, to build a risk signature to predict the prognosis of BC. By evaluating immune parameters and molecular mechanisms, we gained a better understanding of the mechanisms underlying the risk signature. This signature can also be used as a tool to predict the effect of immunotherapy in patients with BC.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3