LncRNA MT1JP plays a protective role in intrahepatic cholangiocarcinoma by regulating miR-18a-5p/FBP1 axis

Author:

Zhao WeiORCID,Zhao Jing,Guo Xiao,Feng Yujie,Zhang Bingyuan,Tian Lantian

Abstract

Abstract Background Cholangiocarcinoma is a common malignant tumor of digestive system. LncRNA metallothionein 1 J, pseudogene (MT1JP) has been reported to play tumor-suppressing roles in multiple cancers. However, its effect on cholangiocarcinoma has not been evaluated. Methods The expression of MT1JP in intrahepatic cholangiocarcinoma specimens and paired para-carcinoma tissues were detected by real-time PCR. The overexpression plasmid and siRNA of MT1JP were transfected into intrahepatic cholangiocarcinoma cells to change the expression levels of MT1JP. CCK-8, flow cytometry and transwell assays were performed to measure proliferation, cell cycle transition, apoptosis, migration and invasion. Dual-luciferase reporter assay, real-time PCR and western blot were carried out to screen the miRNA bound by MT1JP. In addition, xenograft experiment was used to determine the tumorigenesis of cholangiocarcinoma cells in nude mice. Results MT1JP was downregulated in intrahepatic cholangiocarcinoma specimens, and its expression was related with TNM stage and lymph node metastasis. Overexpression of MT1JP inhibited proliferation, cell cycle transition, migration and invasion, and induced apoptosis in intrahepatic cholangiocarcinoma cells. The knockdown of MT1JP led to opposite results. MT1JP bound to miR-18a-5p to facilitate the expression of fructose-1,6-bisphosphatase 1 (FBP1). MiR-18a-5p was increased in intrahepatic cholangiocarcinoma samples, and its expression was negatively correlated with that of MT1JP. In addition, MT1JP also suppressed tumorigenesis in nude mice. Conclusions MT1JP alleviated proliferation, migration and invasion, and induced apoptosis in cholangiocarcinoma cells by regulating miR-18a-5p/FBP1 axis. These findings may provide novel insights for clinical diagnosis and treatment of cholangiocarcinoma.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3