A preoperative nomogram predicts prognosis of patients with hepatocellular carcinoma after liver transplantation: a multicenter retrospective study

Author:

Huang Dabing,Shen Yinan,Zhang Wei,Guo Chengxiang,Liang TingboORCID,Bai Xueli

Abstract

Abstract Background Although criteria for liver transplantation, such as the Milan criteria and Hangzhou experiences, have become popular, criteria to guide adjuvant therapy for patients with hepatocellular carcinoma after liver transplantation are lacking. Methods We collected data from all consecutive patients from 2012 to 2019 at three liver transplantation centers in China retrospectively. Univariate and multivariate analyses were used to analyze preoperative parameters, such as demographic and clinical data. Using data obtained in our center, calibration curves and the concordance Harrell’s C-indices were used to establish the final model. The validation cohort comprised the patients from the other centers. Results Data from 233 patients were used to construct the nomogram. The validation cohort comprised 36 patients. Independent predictors of overall survival (OS) were identified as HbeAg positive (P = 0.044), blood-type compatibility unmatched (P = 0.034), liver transplantation criteria (P = 0.003), and high MELD score (P = 0.037). For the validation cohort, to predict OS, the C-index of the nomogram was 0.874. Based on the model, patients could be assigned into low-risk (≥ 50%), intermediate-risk (30–50%), and high-risk (≤ 30%) groups to guide adjuvant therapy after surgery and to facilitate personalized management. Conclusions The OS in patients with hepatocellular carcinoma after liver transplantation could be accurately predicted using the developed nomogram.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3