Identification of a tumor microenvironment-related seven-gene signature for predicting prognosis in bladder cancer

Author:

Wang Zhi,Tu Lei,Chen Minfeng,Tong ShiyuORCID

Abstract

Abstract Background Accumulating evidences demonstrated tumor microenvironment (TME) of bladder cancer (BLCA) may play a pivotal role in modulating tumorigenesis, progression, and alteration of biological features. Currently we aimed to establish a prognostic model based on TME-related gene expression for guiding clinical management of BLCA. Methods We employed ESTIMATE algorithm to evaluate TME cell infiltration in BLCA. The RNA-Seq data from The Cancer Genome Atlas (TCGA) database was used to screen out differentially expressed genes (DEGs). Underlying relationship between co-expression modules and TME was investigated via Weighted gene co-expression network analysis (WGCNA). COX regression and the least absolute shrinkage and selection operator (LASSO) analysis were applied for screening prognostic hub gene and establishing a risk predictive model. BLCA specimens and adjacent tissues from patients were obtained from patients. Bladder cancer (T24, EJ-m3) and bladder uroepithelial cell line (SVHUC1) were used for genes validation. qRT-PCR was employed to validate genes mRNA level in tissues and cell lines. Results 365 BLCA samples and 19 adjacent normal samples were selected for identifying DEGs. 2141 DEGs were identified and used to construct co-expression network. Four modules (magenta, brown, yellow, purple) were regarded as TME regulatory modules through WGCNA and GO analysis. Furthermore, seven hub genes (ACAP1, ADAMTS9, TAP1, IFIT3, FBN1, FSTL1, COL6A2) were screened out to establish a risk predictive model via COX and LASSO regression. Survival analysis and ROC curve analysis indicated our predictive model had good performance on evaluating patients prognosis in different subgroup of BLCA. qRT-PCR result showed upregulation of ACAP1, IFIT3, TAP1 and downregulation of ADAMTS9, COL6A2, FSTL1,FBN1 in BLCA specimens and cell lines. Conclusions Our study firstly integrated multiple TME-related genes to set up a risk predictive model. This model could accurately predict BLCA progression and prognosis, which offers clinical implication for risk stratification, immunotherapy drug screen and therapeutic decision.

Funder

Hunan Children’s Hospital Talent Training Fund

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3