A pyroptosis-related gene signature predicting survival and tumor immune microenvironment in breast cancer and validation

Author:

Gong Mingkai,Liu Xiangping,Zhao Xian,Wang Haibo

Abstract

Abstract Background Pyroptosis is a newly discovered form of cell programmed necrosis, but its role and mechanism in cancer cells remain unclear. The aim of this study is to systematically analyze the transcriptional sequencing data of breast cancer (BC) to find a pyroptosis-related prognostic marker to predict the survival of BC patients. Methods The original RNA sequencing (RNA-seq) expression data and corresponding clinical data of BC were downloaded from The Cancer Genome Atlas (TGCA) database, followed by differential analysis. The pyroptosis-related differentially expressed genes (DE-PRGs) were employed to perform a computational difference algorithm and Cox regression analysis. The least absolute shrinkage and selection operator (LASSO) was utilized to avoid overfitting. A total of 4 pyroptosis-related genes (PRGs) with potential prognostic value were identified, and a risk scoring formula was constructed based on these genes. According to the risk scores, the patients could be classified into high- and low-risk score groups. The potential molecular mechanisms and properties of PRGs were explored by computational biology and verified in Gene Expression Omnibus (GEO) datasets. In addition, the quantitative real time PCR (RT-qPCR) and Human Protein Atlas (HPA) were performed to validate the expression of the key genes. Results A PRGs signature, which was an independent prognostic factor, was constructed, and could divide patients into high- and low-risk groups. The results from the prognostic analysis indicated that the survival was significantly poorer in the high-risk group than in the low-risk group both in TCGA and in GEO, indicating that the signature is valuable for survival prediction and personalized immunotherapy of BC patients. Conclusions The pyroptosis-related biomarkers were identified for BC prognosis. The findings of this study provide new insights into the development of the efficacy of personalized immunotherapy and accurate cancer treatment options.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Reference55 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3