A positive feedback loop between ID3 and PPARγ via DNA damage repair regulates the efficacy of radiotherapy for rectal cancer

Author:

Huang Chuanzhong,Wang Ling,Chen Huijing,Fu Wankai,Shao Lingdong,Zhou Dongmei,Wu Junxin,Ye Yunbin

Abstract

Abstract Objective To study the effect of inhibitor of differentiation 3 (ID3) on radiotherapy in patients with rectal cancer and to explore its primary mechanism. Methods Cell proliferation and clonogenic assays were used to study the relationship between ID3 and radiosensitivity. Co-immunoprecipitation and immunofluorescence were performed to analyze the possible mechanism of ID3 in the radiosensitivity of colorectal cancer. At the same time, a xenograft tumor model of HCT116 cells in nude mice was established to study the effect of irradiation on the tumorigenesis of ID3 knockdown colorectal cancer cells in vivo. Immunohistochemistry was performed to analyze the relationship between ID3 expression and the efficacy of radiotherapy in 46 patients with rectal cancer. Results Proliferation and clonogenic assays revealed that the radiosensitivity of colorectal cancer cells decreased with ID3 depletion through p53–independent pathway. With the decrease in ID3 expression, MDC1 was downregulated. Furthermore, the expression of ID3, MDC1, and γH2AX increased and formed foci after irradiation. ID3 interacted with PPARγ and form a positive feedback loop to enhance the effect of ID3 on the radiosensitivity of colorectal cancer. Irradiation tests in nude mice also confirmed that HCT116 cells with ID3 knockdown were more affected by irradiation. Immunohistochemical study showed that rectal cancer patients with low expression of ID3 had better radiotherapy efficacy. Conclusions ID3 and PPARγ influence the radiosensitivity of colorectal cancer cells by interacting with MDC1 to form a positive feedback loop that promotes DNA damage repair. Patients with low expression of ID3 who received neoadjuvant chemoradiotherapy can obtain a better curative effect.

Funder

Sciences Foundation of Fujian University Cancer Hospital

Joint Funds for the innovation of science and Technology of Fujian province

The National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3