Novel cuproptosis-related long non-coding RNA signature to predict prognosis in prostate carcinoma

Author:

Cheng Xiaofeng,Zeng Zhenhao,Yang Heng,Chen Yujun,Liu Yifu,Zhou Xiaochen,Zhang Cheng,Wang Gongxian

Abstract

Abstract Background Cuproptosis, an emerging form of programmed cell death, has recently been identified. However, the association between cuproptosis-related long non-coding RNA (lncRNA) signature and the prognosis in prostate carcinoma remains elusive. This study aims to develop the novel cuproptosis-related lncRNA signature in prostate cancer and explore its latent molecular function. Methods RNA-seq data and clinical information were downloaded from the TCGA datasets. Then, cuproptosis-related gene was identified from the previous literature and further applied to screen the cuproptosis-related differentially expressed lncRNAs. Patients were randomly assigned to the training cohort or the validation cohort with a 1:1 ratio. Subsequently, the machine learning algorithms (Lasso and stepwise Cox (direction = both)) were used to construct a novel prognostic signature in the training cohorts, which was validated by the validation and the entire TCGA cohorts. The nomogram base on the lncRNA signature and several clinicopathological traits were constructed to predict the prognosis. Functional enrichment and immune analysis were performed to evaluate its potential mechanism. Furthermore, differences in the landscape of gene mutation, tumour mutational burden (TMB), microsatellite instability (MSI), drug sensitivity between both risk groups were also assessed to explicit their relationships. Results The cuproptosis-related lncRNA signature was constructed based on the differentially expressed cuproptosis-related lncRNAs, including AC005790.1, AC011472.4, AC099791.2, AC144450.1, LIPE-AS1, and STPG3-AS1. Kaplan–Meier survival and ROC curves demonstrate that the prognosis signature as an independent risk indicator had excellent potential to predict the prognosis in prostate cancer. The signature was closely associated with age, T stage, N stage, and the Gleason score. Immune analysis shows that the high-risk group was in an immunosuppressive microenvironment. Additionally, the significant difference in landscape of gene mutation, tumour mutational burden, microsatellite instability, and drug sensitivity between both risk groups was observed. Conclusions A novel cuproptosis-related lncRNA signature was constructed using machine learning algorithms to predict the prognosis of prostate cancer. It was closely with associated with several common clinical traits, immune cell infiltration, immune-related functions, immune checkpoints, gene mutation, TMB, MSI, and the drug sensitivity, which may be useful to improve the clinical outcome.

Funder

Key Research and Development Program of Jiangxi Province

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3