Author:
Choi Jihoon,Topouza Danai G.,Tarnouskaya Anastasiya,Nesdoly Sean,Koti Madhuri,Duan Qing Ling
Abstract
Abstract
Background
A major impediment in the treatment of ovarian cancer is the relapse of chemotherapy-resistant tumors, which occurs in approximately 25% of patients. A better understanding of the biological mechanisms underlying chemotherapy resistance will improve treatment efficacy through genetic testing and novel therapies.
Methods
Using data from high-grade serous ovarian carcinoma (HGSOC) patients in the Cancer Genome Atlas (TCGA), we classified those who remained progression-free for 12 months following platinum-taxane combination chemotherapy as “chemo-sensitive” (N = 160) and those who had recurrence within 6 months as “chemo-resistant” (N = 110). Univariate and multivariate analysis of expression microarray data were used to identify differentially expressed genes and co-expression gene networks associated with chemotherapy response. Moreover, we integrated genomics data to determine expression quantitative trait loci (eQTL).
Results
Differential expression of the Valosin-containing protein (VCP) gene and five co-expression gene networks were significantly associated with chemotherapy response in HGSOC. VCP and the most significant co-expression network module contribute to protein processing in the endoplasmic reticulum, which has been implicated in chemotherapy response. Both univariate and multivariate analysis findings were successfully replicated in an independent ovarian cancer cohort. Furthermore, we identified 192 cis-eQTLs associated with the expression of network genes and 4 cis-eQTLs associated with BRCA2 expression.
Conclusion
This study implicates both known and novel genes as well as biological processes underlying response to platinum-taxane-based chemotherapy among HGSOC patients.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献