Author:
Batra Atul,Sheka Dropen,Kong Shiying,Cheung Winson Y.
Abstract
Abstract
Background
Baseline cardiovascular disease (CVD) can impact the patterns of treatment and hence the outcomes of patients with lung cancer. This study aimed to characterize treatment trends and survival outcomes of patients with pre-existing CVD prior to their diagnosis of lung cancer.
Methods
We conducted a retrospective, population-based cohort study of patients with lung cancer diagnosed from 2004 to 2015 in a large Canadian province. Multivariable logistic regression and Cox regression models were constructed to determine the associations between CVD and treatment patterns, and its impact on overall (OS) and cancer-specific survival (CSS), respectively. A competing risk multistate model was developed to determine the excess mortality risk of patients with pre-existing CVD.
Results
A total of 20,689 patients with lung cancer were eligible for the current analysis. Men comprised 55%, and the median age at diagnosis was 70 years. One-third had at least one CVD, with the most common being congestive heart failure in 15% of patients. Pre-existing CVD was associated with a lower likelihood of receiving chemotherapy (odds ratio [OR], 0.53; 95% confidence interval [CI], 0.48–0.58; P < .0001), radiotherapy (OR, 0.76; 95% CI, 0.7–0.82; P < .0001), and surgery (OR, 0.56; 95% CI, 0.44–0.7; P < .0001). Adjusting for measured confounders, the presence of pre-existing CVD predicted for inferior OS (hazard ratio [HR], 1.1; 95% CI, 1.1–1.2; P < .0001) and CSS (HR, 1.1; 95% CI, 1.1–1.1; P < .0001). However, in the competing risk multistate model that adjusted for baseline characteristics, prior CVD was associated with increased risk of non-cancer related death (HR, 1.48; 95% CI, 1.33–1.64; P < 0.0001) but not cancer related death (HR, 0.98; 95% CI, 0.94–1.03; P = 0.460).
Conclusions
Patients with lung cancer and pre-existing CVD are less likely to receive any modality of cancer treatment and are at a higher risk of non-cancer related deaths. As effective therapies such as immuno-oncology drugs are introduced, early cardio-oncology consultation may optimize management of lung cancer.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference43 articles.
1. Cardiovascular diseases. [cited 2020 Mar 22]. Available from: https://www.who.int/westernpacific/health-topics/cardiovascular-diseases.
2. Cancer [Internet]. [cited 2020 Mar 12]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer.
3. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1151–210.
4. Dawber TR, Kannel WB, Revotskie N, Stokes J, Kagan A, Gordon T. Some factors associated with the development of coronary heart disease: six years’ follow-up experience in the Framingham study. Am J Public Health Nations Health. 1959;49:1349–56.
5. Masoudkabir F, Sarrafzadegan N, Gotay C, Ignaszewski A, Krahn AD, Davis MK, et al. Cardiovascular disease and cancer: evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017;263:343–51.