Fibronectin mediates activation of stromal fibroblasts by SPARC in endometrial cancer cells

Author:

Yoshida Sachiko,Asanoma KazuoORCID,Yagi Hiroshi,Onoyama Ichiro,Hori Emiko,Matsumura Yumiko,Okugawa Kaoru,Yahata Hideaki,Kato Kiyoko

Abstract

Abstract Background Matricellular glycoprotein, SPARC is a secreted molecule, that mediates the interaction between cells and extracellular matrix. SPARC functions as a regulator of matrix organization and modulates cell behavior. In various kinds of cancer, strong SPARC expression was observed in stromal tissues as well as in cancer epithelial cells. The function of SPARC in cancer cells is somewhat controversial and its impact on peritumoral stromal cells remains to be resolved. Methods We investigated the effects of SPARC expression in endometrial cancer cells on the surrounding stromal fibroblasts using in vitro co-culture system. Changes in characteristics of fibroblasts were examined by analysis of fibroblast-specific markers and in vitro contraction assay. Results SPARC induced AKT phosphorylation and epithelial-to-mesenchymal transition, consistent with previous reports. Cancer-associated fibroblasts of endometrial cancer expressed higher levels of mesenchymal- and fibroblast-associated factors and had a stronger contraction ability. Unexpectedly, cancer-associated fibroblasts expressed comparable levels of SPARC compared with fibroblasts from normal endometrium. However, co-culture of normal fibroblasts with SPARC-expressing Ishikawa cells resulted in activation of the fibroblasts. Immunodepletion of SPARC did not affect the activation of fibroblasts. Conclusions Our data indicated that SPARC activated fibroblasts only in the presence of fibronectin, which was abundantly secreted from SPARC-expressing endometrial cancer cells. These results suggested that a SPARC-fibronectin-mediated activation of fibroblasts might be involved in enhanced mobility and invasion of cancer cells.

Funder

Japan Society for the Promotion of Science

FUKUOKA OBGYN Researcher’s Charity Foundation Fund

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3